
ExSample: Efficient Searches on Video Repositories
through Adaptive Sampling

Oscar Moll
MIT CSAIL

Cambridge, MA, USA
orm@csail.mit.edu

Favyen Bastani
MIT CSAIL

Cambridge, MA, USA
favyen@csail.mit.edu

Sam Madden
MIT CSAIL

Cambridge, MA, USA
madden@csail.mit.edu

Mike Stonebraker
MIT CSAIL

Cambridge, MA, USA
stonebraker@csail.mit.edu

Vijay Gadepally
MIT Lincoln Laboratory
Lexington, MA, USA

vijayg@ll.mit.edu

Tim Kraska
MIT CSAIL

Cambridge, MA, USA
kraska@mit.edu

Abstract—Capturing and processing video is increasingly com-
mon as cameras become cheaper to deploy. At the same time,
rich video-understanding methods have progressed greatly in
the last decade. As a result, many organizations now have
massive repositories of video data, with applications in mapping,
navigation, autonomous driving, and other areas.

Because state-of-the-art object-detection methods are slow and
expensive, our ability to process even simple ad-hoc object search
queries (“find 100 traffic lights in dashcam video”) over this
accumulated data lags far behind our ability to collect the data.
Processing video at reduced sampling rates is a reasonable default
strategy for these types of queries; however, the ideal sampling
rate is both data and query dependent. We introduce ExSample,
a low cost framework for object search over un-indexed video
that quickly processes search queries by adapting the amount
and location of sampled frames to the particular data and query
being processed.

ExSample prioritizes the processing of frames in a video
repository so that processing is focused in portions of video that
most likely contain objects of interest. It approaches searching
in a similar way to a multi-arm bandit problem where each
arm corresponds to a portion of a video. On large, real-world
datasets, ExSample reduces processing time by 1.9x on average
and up to 6x over an efficient random sampling baseline.
Moreover, we show ExSample finds many results long before
sophisticated, state-of-the-art baselines based on proxy scores can
begin producing their first results.

Index Terms—video data,sampling,object detection

I. INTRODUCTION

Video cameras have become incredibly affordable over
the last decade, and are ubiquitously deployed in static and
mobile settings, such as smartphones, vehicles, surveillance
cameras, and drones. Large video datasets are enabling a
new generation of applications. For example, video data from

Research was sponsored by the United States Air Force Research Labora-
tory and the United States Air Force Artificial Intelligence Accelerator and was
accomplished under Cooperative Agreement Number FA8750-19-2-1000. The
views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed
or implied, of the United States Air Force or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

vehicle dashboard-mounted cameras (dashcams) is used to
train object detection and tracking models for autonomous
driving systems [1]; to annotate map datasets such as Open-
StreetMap with locations of traffic lights, stop signs, and other
infrastructure [2]; and to automate insurance claims processing
by analyzing collision scene footage [3].

However, these applications must process large amounts
of video to extract useful information. Consider the task of
finding examples of traffic lights—for example, to annotate
a map—within a large collection of dashcam video collected
from many vehicles. The most basic approach to evaluate this
query is to run an object detector frame-by-frame over the
dataset, and select frames where it detects one or more lights.
Because state-of-the-art object detectors run at about 10 frames
per second (fps) over 1080p video on modern high-end Graph-
ics Processing Units (GPUs), scanning through a collection of
1000 hours of 30 fps video with a detector on a GPU would
take 3000 GPU-hours. In the offline query case, which is the
case we focus on in this paper, we can parallelize our scan over
the video across many GPUs; however, as the rental price of
a GPU is around $0.50 per hour (for the cheapest g4 Amazon
Web Services [AWS] instance in 2021) [4], our cost for this
one ad-hoc query would be $1.5K, regardless of parallelism.
Hence, this workload presents challenges in both time and
monetary cost. Note that accumulating 1000 hours of video
represents just 10 cameras recording for less than a week.

A straightforward method for mitigating this issue is to
reduce the number of sampled frames: for example, run
the detector only on one frame per second of video; since
it is reasonable to assume all traffic lights are visible for
more than one second. The savings are large compared to
inspecting every frame: processing only one frame every
second decreases costs by 30x for a video recorded at 30 fps.
Unfortunately, this strategy has limitations. For example, the
one frame out of every 30 that we look at may not show the
light clearly, causing the detector to miss it completely; lights
that remain visible in the video for long intervals, e.g., 30
seconds, would be seen multiple times unnecessarily, thereby

1

ar
X

iv
:2

00
5.

09
14

1v
3

 [
cs

.D
B

]
 1

2
A

ug
 2

02
2

wasting resources detecting those objects repeatedly; or worse
still, we may miss other types of objects that remain visible
for shorter intervals, and in general the optimal sampling rate
is unknown and varies across datasets depending on factors
such as whether the camera is moving or static and the angle
and distance to the object.

In this paper, we introduce ExSample, a video sampling
technique designed to reduce the number of frames that need to
be processed by an expensive object detector for object-search
queries over large video repositories. ExSample models this
problem as one of deciding which frame from the dataset to
look at next based on what it has seen in the past. Specifically,
ExSample splits the dataset into temporal chunks (e.g., half-
hour chunks), and maintains a per-chunk estimate of the
probability of finding a new object in a frame randomly
sampled from that chunk. ExSample iteratively selects the
chunk with the best estimate, samples a frame randomly from
the chunk, and processes the frame through the object detector.
ExSample updates the per-chunk estimates after each iteration
so that the estimates become more accurate as more frames
are processed.

Recent state-of-the-art methods for optimizing queries over
large video repositories have focused on training cheap, proxy
models to approximate the outputs of expensive, deep neural
networks [5]–[10]. However, these methods require training
a proxy model for each new query and then running it on
the dataset to choose which frames to look at with the more
expensive reference detector. While helpful for some queries,
for ad-hoc object queries these approaches impose a scanning
overhead required to score the frames, which can be hard to
compensate for, even if the scores help find results faster after
scanning. This is especially problematic if the user only wants
to find a few results (limit queries) .

ExSample addresses the limit query problem from a differ-
ent perspective. Rather than select frames for applying the
object detector based on proxy scores, ExSample employs
an adaptive sampling technique that eliminates the need for
a proxy model and an upfront full scan. A key challenge
here is that, in order to generalize across datasets and object
types, ExSample must not make assumptions about how long
objects remain visible to the camera and how frequently they
appear. To address this challenge, ExSample guides future
processing using feedback from object detector outputs on
previously processed frames. Also, ExSample gives higher
weight to portions of video likely to contain objects that have
not already been seen. Thus, ExSample avoids redundantly
processing frames that contain objects that were previously
seen in other frames.

We evaluate ExSample a variety of search queries span-
ning different objects, different kinds of video, and different
numbers of desired results. We show savings in the number
of frames processed ranging up to 6x on real data, with a
geometric average of 1.9x across all settings, in comparison
to an efficient random sampling baseline. In the worst case,
ExSample does not perform worse than random sampling,
something that is not always true of alternative approaches.

In summary, our contributions are (1) ExSample, an adap-
tive sampling method that facilitates ad-hoc object searches
over video repositories, (2) a formal analysis of ExSample’s
design, and (3) an empirical evaluation showing ExSample is
effective on real datasets under real system constraints, and
outperforms existing approaches for object search.

II. BACKGROUND

In this section we review object detection, introduce distinct
object queries, and discuss limitations of prior work.

A. Object Detection

An object detector is a model that operates on still images,
inputting an image and outputting a set of boxes within the
image containing the objects of interest. The amount of objects
found will range from zero to arbitrarily many. Well known
examples of object detectors include Yolo [11] and Mask R-
CNN [12]. In Figure 1, we show two example frames that were
processed by an object detector, with yellow boxes indicating
detection of traffic lights.

Object detectors with state-of-the-art accuracy in bench-
marks such as COCO [13] typically execute at around 10
frames per second on modern GPUs, though it is possible
to achieve real-time rates by sacrificing accuracy [11], [14].

In this paper we do not seek to improve on state-of-
the-art object-detection approaches. Instead, we regard object
detectors as a black box with a costly runtime; and aim to
substantially reduce the number of video frames that need to
be processed by the detector.

B. Distinct Object Queries

Also, we are interested in processing higher level queries
on video enabled by the availability of object detectors. In
particular, we are concerned with distinct object limit queries
such as “find 20 traffic lights in my dataset” over large
repositories of multiple videos from multiple cameras. For
distinct object queries, each result should be a detection of
a different object. For example, in Figure 1, we detected the
same traffic light in two frames several seconds apart; although
these detections are at different positions and are computed in
different frames, in a distinct object query, these two detections
yield only one distinct result.

Fig. 1: Two video frames showing the same traffic light
instance several seconds apart. A distinct object query is
defined by having these two boxes only count as one result.

Then, to define a query, users must specify not only the
object type of interest and the number of desired results,
but also a discriminator function that determines whether

2

a new detection corresponds to an object that was already
seen earlier during processing. In this paper, we assume a
fixed discriminator that applies an object-tracking algorithm
to determine whether a detection is new. The discriminator
applies a tracker similar to SORT [15] backwards and forwards
through video for each detection of a new object to compute
the position of that object in each frame where the object
was visible; then, future detections are discarded if they match
previously observed positions.

The goal of this paper is to reduce the cost of processing
such queries. Moreover, we want to do this on ad-hoc distinct
object queries over large video repositories, where there are
diverse videos in our dataset and where it is too costly to
compute all object detections ahead of time for the type of
objects we are looking for. This distinction affects multiple
decisions in the paper, including not only the results we return
but also the main design of ExSample and how we measure
result recall.

Following, we discuss two baselines and prior work for
optimizing the processing of distinct object queries.

Naive execution. A straightforward method is to process
frames sequentially, applying the object detector on each
frame of each video, using the discriminator function to
discard repeated detections of the same object. Once enough
distinct objects to satisfy the query’s limit clause are collected,
scanning can stop. A natural extension is to sample only one
out of every n frames. Sequential processing exhibits high
variance in execution time due to the uneven distribution of
objects in video. Moreover, if objects appear in the video
for much longer than the sampling rate, we may repeatedly
compute detections of the same object. Similarly, if objects
appear for shorter than the sampling rate, we may completely
miss some objects.

Random sampling. A better strategy is to iteratively process
frames uniformly sampled from the video repository (without
replacement). This method reduces the query execution time
over naive execution as it explores more areas of the data
more quickly, whereas sequential execution can get stuck in a
long segment of video with no objects. Additionally, early in
query execution, randomly sampled frames are less likely to
contain previously seen objects compared to frames sampled
sequentially.

Proxy-based methods. Methods that optimize video query
execution by training cheap, proxy models to approximate the
outputs of expensive object detectors have recently attracted
much interest. In particular, BlazeIt [10] proposes an adaption
of proxy model techniques for processing distinct object
queries with limit clauses. Rather than randomly sampling
frames for processing through the object detector, BlazeIt
processes frames in order of the score computed by the proxy
model on the frame, beginning with the highest scoring frames.
Since the proxy model is trained to produce higher scores on
frames containing relevant object detections, this approach ef-
fectively ensures that frames processed early during execution
contain relevant detections (but not necessarily new objects).

However, proxy-based methods have several critical short-
comings when used for processing object search queries. First,
for queries seeking rare objects that appear infrequently in
video, these methods require substantial pre-processing to col-
lect annotations for training the proxy models, which can be as
costly as solving the search problem in the first place; indeed,
BlazeIt resorts to random sampling if the number of positive
training labels is too small. Moreover, when processing limit
queries, proxy-based methods require an upfront per-query
dataset scan in order to compute proxy scores on every video
frame in the dataset. As we will show in our evaluation,
oftentimes, the cost of performing just this scan is already
larger than simply processing a limit query under random
sampling.

III. EXSAMPLE

In this section we explain how our approach, ExSample, op-
timizes query execution. Due to the high compute demand of
object detectors, runtime in ExSample is roughly proportional
to the number of frames processed by the detector. Thus, we
focus on minimizing the number of frames processed to find
some number of distinct objects.

To do so, ExSample estimates which portions of a video
are more likely to yield new results, and samples frames more
often from those portions. Importantly, ExSample prioritizes
finding distinct objects, rather than purely maximizing the
number of computed object detections.

At a high level, ExSample conceptually splits the input
into chunks, and scores each chunk separately based on the
frequency with which distinct objects were found in that chunk
in the past. This scoring system allows ExSample to allocate
resources to more promising chunks, while also allowing it to
diversify where it looks next as more frames are sampled.
Our evaluation shows that this technique helps ExSample
outperform greedy, proxy-guided strategies, even when they
employ duplicate avoidance heuristics (i.e., do not process
frames that are close to previously processed frames).

To make it practical, ExSample is composed of two core
components: an estimate of future results per chunk, described
in Section III-A, and a mechanism to translate these estimates
into a sampling decision which accounts for estimate errors,
introduced in Section III-B. In these two sections we focus
on quantifying the types of error. Later, in Section III-E, we
detail the algorithm step by step.

A. Scoring a Single Chunk

In this section we derive our estimate for the future value
of sampling a chunk. To make an optimal decision of which
chunk to sample next, assuming n samples were taken,
ExSample estimates R(n+1) for each chunk, which represents
the number of new results we expect to find on the next sample.
New means R does not include objects already found in the
previous n samples, even if they also appeared in the (n+1)th

frame. Intuitively, the chunk with the largest R(n+1) is a good
location to pick a frame from next.

3

Our main conceptual tool for reasoning about the quantity
R(n+ 1) as well as our estimates for it throughout this paper
is to analyze each result instance in isolation and aggregate to
obtain global estimates. More formally, let N be the number
of distinct objects in the data. Each object i out of those N
is visible for a different number of frames. When sampling
frames at random from a chunk, each i will have a different
probability pi of being found proportional to its duration. For
example, in video collected from a vehicle stopped at a red
light, red lights will tend to have large pi lasting in the order
of minutes, while green and yellow lights are likely to have
much smaller pi, perhaps in the order of a few seconds. We
find in practice these quantities pi vary widely even for a single
object class, from tens to thousands of frames. For any given
run of samples, R(n+ 1) is the sum over the pi of all as-yet
unseen instances R(n+ 1) = ΣN

i=1pi · [i /∈ seen(n)]
We emphasize that pi and N are used in order to reason

about ExSample, but they are not known in advance by
ExSample or by the user. Instead, a key contribution of
ExSample is to adapt to a dataset and a query specific set
of pi during the sampling process. Furthermore, we clarify
ExSample also does not attempt to estimate individual pi or
N , instead ExSample estimates R directly with the following
estimate R̂:

R̂(n+ 1) := N1(n)/n (III.1)

where N1(n) is the number of distinct results (objects) seen
exactly once so far, and n is the number of frames sampled
and inspected so far.

To implement this estimate ExSample tracks how many
times we have seen each distinct result. Each result seen only
once contributes a count of one to N1(n). Results seen more
than once do not contribute anything to N1(n), and neither do
any unseen results (which would be impossible to account for
directly). Unlike the pi or N , which are unknown to the user
and to ExSample, N1(n) is a quantity ExSample can observe.

We now justify the definition of R̂ in Eq. III.1 by bounding
the expected error E[R̂ − R] in terms of data dependent
quantities (we let µ and σ stand for mean and standard
deviation)

Theorem (Bias of R̂).

0 ≤
E
[
R̂−R

]
R̂

≤

{
max pi√
N(µp + σp)

(III.2)

Intuitively, Eq. III.2 states R̂ overestimates R in expectation,
that the size of the overestimate is guaranteed to be less than
the largest probability, which is likely small, but even if some
pi outliers made max pi large, if the standard deviation σp is
small we can still bound the bias. Eq. III.2 does suggest (but
does not imply) that skew (measured by σp) could affect the
accuracy of the estimate, we will address that experimentally.
A large N or a large µp may seem problematic for Eq. III.2,
but we note that having large number of results N or long
average duration µp implies many results are found after only
a few samples, so the end goal of searching through the data

is easier in the first place and guaranteeing accurate estimates
is less important.

Proof. The main proof idea is accounting for each object
i’s individual expected contribution to both R(n + 1) and
to N1(n). We then recover both N1(n) and R(n + 1) by
adding each term, justified by linearity of expectation. The
individual inequalities of Eq. III.2 follow from analyzing this
sum. The event that on a given sequence of samples object
i is seen on the (n + 1)th sample after being missed the
on the first n samples occurs with probability pi(1 − pi)

n.
We denote this quantity πi(n + 1). On the other hand, the
event that after n samples object i has appeared, exactly one
occurs with probability npi(1− pi)n−1 = nπi(n). Therefore,
E [R(n+ 1)] =

∑
π(n + 1), while E

[
N1(n)

]
= n

∑
π(n).

These sums are taken over the N object indices i, which we
omit for convenience. Therefore, E

[
N1(n)/n−R(n+ 1)

]
=∑

π(n) − π(n + 1). Because by definition π(n + 1) =
(1 − p)π(n), the right-hand side simplifies to

∑
pπ(n). In-

tuitively, term by term this error is small compared to the
terms in our estimate:

∑
π(n), especially when the pi are

small. The expected error is positive, showing the left side of
Eq. III.2. The top right inequality is easily seen by replacing
the individual p with max p and factoring it out.

The remaining inequality can be derived by applying
Cauchy-Schwartz to the sum. The full details appear in an
extended version [16]. For this paper, the main importance of
this last inequality involving σp is to consider the relevance
of skew over the pi in practice.

B. Picking the best chunk under uncertainty

In this section we explain how we extend the earlier estimate
with an estimate of its uncertainty so we can use it to make
decisions about which chunk to use even when there is some
error in our estimates.

If we knew the real Rj for every chunk j, then the optimal
algorithm would simply sample from the chunk with the
largest Rj value. However, if we use the raw point estimate R̂j

in place of Rj ExSample could get stuck sampling chunks with
an early lucky result and ignore better chunks with unlucky
early results. 1

Now we explain how ExSample handles the problem that
an observed N1(n) fluctuates randomly due to randomness
in our sampling. This is especially true early in the sampling
process, where only a few samples have been collected but we
need to make a sampling decision. Because the quality of the
estimates themselves is tied to the number of samples taken,
and we do not want to stop sampling a chunk due to a small
amount of bad luck early on, it is important we estimate how
noisy our estimate is. The usual way to do this is by estimating
the variance of our estimator: Var[N1(n)/n], which we find
is small compared to R̂.

1Beside the uncertainty problem, when sampling from multiple chunks there
is also a second, less important concern of how to handle instances spanning
multiple chunks. In [16] we show Eq. III.1 can be adjusted to handle this
problem.

4

Theorem (Variance).

Var[R̂(n+ 1)] ≤ E[R̂(n+ 1)]/n (III.3)

Proof. Similar to our estimate of bias, we estimate the vari-
ance N1(n) assuming independence of the different instances
and adding their individual variances. We can express N1(n)
a sum of binary indicator variables Xi, which are 1 if instance
i has shown up exactly once. Xi = 1 with probability nπi(n).
Therefore, N1(n) =

∑
iXi and because of our independence

assumption Var[N1(n)] =
∑

i Var[Xi]. Because Xi is a
Bernoulli random variable, its variance is nπi(n)(1−nπi(n))
which is bounded by nπi(n) itself. Therefore, Var[N1(n)] ≤∑
nπ(n). This latter sum we know is E[N1(n)]. Therefore,

Var[N1(n)/n] ≤ E[N1(n)]/n2 = E[R̂(n+ 1)]/n.

In fact, we can go further and fully characterize the distri-
bution of values N1(n) takes as follows.

Theorem (Sampling distribution of N1(n)). Assuming pi are
small or n is large, and assuming independent occurrence of
instances, N1(n) follows a Poisson distribution with parame-
ter λ = Σπi(n).

Proof. The proof idea is to treat each instance separately as
we did for variance and bias, but this time focus on the
moment generating functions. The independence assumption
lets us recover the moment generating function of N1(n) from
multiplying the individual functions.

Refer to [16] for full details.

C. Thompson Sampling

Now we use the previous results to design a sampling
strategy. The goal is to pick among chunks j, balancing both
the desire for a large R̂j(nj) and the unreliability of the point
estimate when nj is small. Thompson sampling [17] is one
way to automate this process. Thompson sampling works by
modeling unknown quantities such as Rj , not just with a
point estimate such as R̂j , but with a distribution over its
possible values informed by the uncertainty in the estimate.
Then, instead of using the point estimate R̂ directly to guide
decisions, we use a sample from R̂′s distribution. In our
implementation, we choose to model the uncertainty of our
estimate R̂j(n + 1) as following a Gamma distribution. A
Gamma distribution is shaped much like the Normal, except
it is restricted to non-negative values. When its mean is a
high positive number compared to its standard deviation it
appears much like a Normal. When its mean is near 0 then
its shape changes to have single mode at 0 (we show some
different shapes in Figure 2, in solid red). Among other uses,
the Gamma distribution is a way to model the uncertainty
of the hidden, positive parameter λ of a Poisson distribution
which we only get to interact with through sampling. The
Gamma distribution is fully described by parameters α and β,
where both are positive real numbers. We use α = N1

j and
β = nj because the mean for such a distribution is α/β, or
N1

j /nj in our case, which is by construction consistent with
Eq. III.1; and the variance is α/β2, or N1

j /n
2
j in our case,

which is by construction consistent with the bound Eq. III.3.
Finally, the Gamma distribution is not defined when α or
β are 0, so we need both a way to deal with the scenario
where N1(n) = 0 which happens at the start, when objects
are rare, or when only a few objects are left. We do this by
adding a small quantity α0 and β0 to both terms, obtaining
the distribution below.

Rj(nj + 1) ∼ Γ(α = N1
j + α0, β = nj + β0) (III.4)

We used α0 = .1 and β0 = 1 in practice, though we did
not observe a strong dependence on this value choice. We
also experimented with alternatives to Thompson sampling,
specifically Bayes-UCB [18], which uses upper distribution
quantiles based also on Eq. III.4 instead of samples to make
decisions, but again we did not observe different results.

D. Empirical Validation

In this section we provide an empirical validation of
Eq. III.1, and Eq. III.4. The question we are interested in is:
given an observed N1 and n, what is the true R(n+ 1), and
how does it compare to the belief distribution Γ(N1, n) from
Eq. III.4.

We ran a series of simulation experiments. We first generate
1000 p1, ...p1000 at random to represent 1000 results with
different durations. To ensure there is skew in the p we use
a lognormal distribution to generate the pi. To illustrate the
skew in the values, the smallest pi is 3 × 10−6, while the
max pi = .15. The parameters µp and σp are 3 × 10−3 and
8 × 10−3 respectively. For a dataset with 1 million frames
(about 10 hours of video), these durations correspond to
objects spanning from 1/10 of a second up to about 1.5 hours,
more skew than what normally occurs.

Then, we model the sampling of a random frame as follows:
each instance is in the frame independently at random with
probability pi. To decide which of the instances will show up
in our frame, we simulate tossing 1000 coins independently,
each with their own pi, and the positive draws give us the
subset of instances visible in that frame. We then proceed
drawing these samples sequentially, tracking the number of
frames we have sampled n and how many instances we have
seen exactly once, N1. We also record E [R(n+ 1)]: the
expected number of new instances we can expect in a new
frame sampled, which is possible because we can compute it
directly as ΣN

i [i /∈ seen (n)] ·pi because in the simulation we
know the remaining unknown instances and know their hidden
probabilities pi, so we compute E [R(n+ 1)]. We sample
frames up to n = 180000, and repeat the experiment 10K
times, obtaining hundreds of millions of tuples of the form
(n,N1, R(n+ 1)) for our fixed set of pi. Using this data, we
can answer our original question: given an (N1, n) pair, what
is the histogram of the actual R(n+ 1) across runs and how
does it compare to Eq. III.4. We show these histograms for
six pairs of n and N1 in Figure 2.

Figure 2 shows a mix of three important scenarios. The first
two subplots with n ≤ 100, representative of the early stages

5

n: 172085

N1: 5

n: 179601

N1: 0

n: 14093

N1: 58

n: 120911

N1: 4

n: 82

N1: 127

n: 100

N1: 116

0e+00 3e−05 6e−05 9e−05 0.0e+00 2.5e−05 5.0e−05 7.5e−05

0.002 0.003 0.004 0.005 0.006 0.0070.00000 0.00005 0.00010 0.00015

1.1 1.3 1.5 1.7 1.9 1.0 1.2 1.4

R(n+1)

actual R(n+1) point estimate Thompson samples Gamma(N1+.1,n+1)

Estimates, real values and Thompson sampling

Fig. 2: Comparing our Gamma heuristic of Eq. III.4 with a
histogram of the true values R(n+ 1) from a simulation with
heavily skewed pi. The details of the simulation are discussed
in Section III-D. The histograms show the range of values
seen for R(n + 1) when we have the observed N1 and n.
The point estimate N1/n of (Eq. III.1) is shown as a solid
vertical line. The belief distribution density of Eq. III.4 is
plotted as a thicker orange line, and five samples drawn from
that distribution are shown as dashed vertical lines.

of sampling. Here we see the Γ model has substantially more
variance than the underlying true distribution of R(n + 1).
This is intuitively expected: when n = 0 the value of R(1) is∑
p, which our estimator does not know. As n grows to mid

range values (next two plots), we see that the curve fits the
histograms very well, and also that the curve keeps shifting left
to lower and lower orders of magnitude on the x axis. Here
we see that the one-sided nature of the Gamma distribution
fits the data better than a bell shaped curve. The final two
subplots show scenarios where n has grown large and N1

potentially very small, including a case where N1 = 0. In
that last subplot, we see the effect of having the extra α0

in Eq. III.4, which means Thompson sampling will continue
producing non-zero values at random and we will eventually
correct our estimate when we find a new instance. The bias
error is not large enough despite the skew in p.

Finally, in reality it is possible that the different events are
not independent of each other, which is an assumption going
into the variance estimate Eq. III.3. We tested the variance
estimate directly on the objects of the Berkeley Deep Drive
(BDD) multi-object tracking (MOT) dataset, and found that
the 95% confidence bound derived from the Eq. III.3 includes
the actual expected reward about 80% of the time (with some
variation across classes). In general, the trend was that our
variance estimate is a slight underestimate, suggesting some

dependency (co-occurring of events) causes the extra variance
observed in practice.

E. Algorithm

Having derived and demonstrated how to estimate R for
different chunks, we now explain ExSample step by step in
Algorithm 1, without having any prior information about N
or p.

input : video, chunks, detector, discrim, result limit
output: ans

1 ans← [], N1 ← [0,0,. . . ,0], n← [0,0,. . . ,0]
2 while len(ans) < result limit do

// 1) choice of chunk and frame
3 for j ← 1 to M do
4 Rj ← Γ(N1[j] + α0, n[j] + β0).sample()

5 end
6 j∗ ← arg maxj Rj

7 frame id← chunks[j∗].sample()

// 2) io,decode,detect,match
8 rgb frame← video.read and decode(frame id)
9 dets← detector(rgb frame)

// d0 are the unmatched dets
// d1 are dets with only one match

10 d0, d1 ← discrim.get matches(frame id, dets)

// 3) update state
11 N1[j∗]← N1[j∗]+len(d0) − len(d1)
12 n[j∗]← n[j∗] + 1
13 discrim.add(frame id, dets)
14 ans.add(d0)
15 end

Algorithm 1: ExSample

The inputs to the algorithm are:
- video: The video data, either a single video or a collection

of files.
- chunks: How we have partitioned the frames in the video.

There are M chunks total.
- object detector: Processes video frames and returns

object detections (boxes) relevant to the query.
- discrim: decides whether a detection is new or matches

previous detections.
- result_limit: an indication of when to stop.

The loop consists of three parts: picking a frame, processing
the frame, and updating the sampler state. First, to pick a frame
ExSample decides which frame to process next. It applies the
Thompson sampling step in line 4, where we draw a separate
sample Rj from the belief distribution Eq. III.4 for each of the
chunks, which is then used in line 6 to pick the highest scoring
chunk. As in the rest of the paper, j indexes over chunks.
During the first execution of the while loop all the belief
distributions are identical, but Thompson sampling effectively
breaks ties at random. Once decided on a best chunk index j∗,
we sample a frame index at random from the chunk in line 7.

6

Second, ExSample reads and decodes the chosen frame, and
applies the object detector on it (line 9). Then, we pass the
computed detections on to a discriminator, which compares the
detections with objects returned earlier during processing in
other frames, and decides whether each detection corresponds
to a new, distinct object. The discriminator returns two subsets:
d0, the detections that did not match with any previous results
(new objects), and d1, the detections that matched exactly once
with any previous detection. We only use the size of those sets
to update our statistics in the next stage. This frame processing
stage of ExSample is the main bottleneck, and is dominated
first by the detector call in line 9, and second by the random
read and decode in line 8.

Third, we update the state of our algorithm, updating N1

and n for the chunk we sampled. We store detections in the
discriminator and append the new detections to the result set
(ans). The amount of tracked state is proportional to the
number of chunks, and to the number of results we detected
so far.

F. Other Optimizations

The implementation supplements Algorithm 1 with two
optimizations that integrate easily:

Batched sampling. Algorithm 1 processes one frame at a
time, but on modern GPUs inference throughput is faster
when performed on batches of images. The code for a batched
version is similar to that in Algorithm 1, but on line 4 we draw
B samples per chunk j instead of one sample from each belief
distribution. The arg max code in Algorithm 1 then produces
B batch indices. The distribution over the indices depends on
Thompson sampling. The state update can also be done in
batch form: all the updates to N1

j and nj are commutative
because they are additive.

Avoiding near duplicates within a single chunk. While
random sampling is both a reasonable baseline and a good
method for sampling frames within selected chunks, random
allows samples to happen very close to each other in quick suc-
cession: for example in a 1000 hour video, random sampling is
likely to start sampling frames within the same one hour block
after having sampled only about 30 different hours, instead
of after having sampled most of the hours once. For this
reason, we introduce a variation of random sampling, which
we call random+, to deliberately avoid sampling temporally
near previous samples when possible: by sampling one random
frame out of every hour, then sampling one frame out of
every not-yet sampled half hour at random, and so on, until
eventually sampling the full dataset. We evaluate the separate
effect of this change in our evaluation. We also use random+
to sample within a chunk in ExSample, by modifying the
internal implementation of the chunk.sample() method
in line 7.

IV. DETERMINANTS OF EXSAMPLE LIMITS

We have explained how ExSample makes decisions on
where to sample and how it adapts its sampling based on sta-

tistical estimates. In this section, we explain how much better
than random ExSample can be, and when it cannot be much
better than random. We first show a different (non practical)
sampling method that upper bounds how well ExSample can
do. We show though simulation that ExSample matches this
upper bound in practice (though only after enough sampling
has happened). Second, we identify two important factors that
affect how much better than random sampling ExSample can
be: the first factor is skew in how results are spread within the
dataset, which is inherent to the data; the second is the number
of chunks the data is split into, which the user chooses ahead
of time. Using the same simulation we show how these factors
affect ExSample performance.

A. Optimal chunk weights

Here we derive an alternative way of sampling chunks that
upper bounds ExSample. Though it is not practical, it is helpful
to understand when ExSample would not be helpful and also
whether ExSample is choosing optimally rather than simply
better than random.

ExSample can be thought of as implementing a type of
weighted sampling (though the weights are not explicitly
computed). At any point during a run, ExSample allocates
n samples across M different chunks, de-facto assigning a
weight of nj/n to each chunk. A natural question is how this
assignment fares against an optimal weight assignment chosen
ahead of time (assuming a fixed target n). In this section we
derive the optimal weight assignment (as a function of n)
which is also a good conceptual benchmark for ExSample.
This benchmark is not applicable in real scenarios, but helps
to understand ExSample and its limits. The number of results
discovered by random sampling after n samples follows the
curve N(n) =

∑
1− (1− pi)n. If we first split the data into

M chunks, conceptually we can think of instance i having
an M-dimensional vector p = (pij), coordinate j in this
vector is the conditional probability of seeing instance i when
sampling from chunk j. The chance of sampling from a chunk
is also an M dimensional vector w = (wj), the total chance
of sampling instance i is the dot product piw. The expected
number of instances found after n samples in that scenario is∑

1− (1− piw)n. The optimal offline allocation of samples
to chunks is therefore

arg max
w

∑
1− (1− piw)n (IV.1)

where w is constrained to be a valid weight vector (entries
are non negatives and add up to 1). In the unrealistic scenario
where pi for all chunks were known then we can solve for
w using a package such as [19]. We later show empirically
in Figure 4 that ExSample matches this benchmark as more
samples are taken.

Note uniform random sampling corresponds to equal
weights and is optimal when all chunks share similar prob-
abilities. However, when some chunks have more results
than others or when the pi change across chunks we expect
ExSample will discover better sample allocations.

7

B. Instance skew across chunks

This section explores how different parameters, in particular
skew in instances and average duration of instances, affect
ExSample performance in simulation.

Instance skew is a key parameter governing performance of
ExSample. If we knew 95% of our results lie on the first half of
the dataset, then we could allocate all our samples to that first
half. This would boost the pi of those results in the first half
by 2×, without requiring knowledge of their precise locations.
Hence, we could expect about a 2× savings in the frames
needed to reach the same number of results. Skew arises
in datasets whenever the occurrence of an event correlates
relevant latent factor that varies across time e.g., time of day
or location (city, country, highway, camera angle) where video
is taken. ExSample exploits this skew via sampling when it
exists in the data, even though ExSample is not aware of these
correlated factors or expects them as inputs.

In our simulation we show that under a wide variety of
situations ExSample can outperform random by 2x to 80x,
and it never performs significantly worse. We also explore in
detail situations where random is competitive with ExSample.
Results are shown results in Figure 3.

To run the simulation, we fixed the number of instances N to
2000, and the number of frames to 16 million. We placed these
2000 instances according to a normal distribution centered in
these 16 million frames, varying the standard deviation to
result in no skew (left column in the Figure 3) and skew
where 95% of the instances appear in the center 1/4, 1/32,
and 1/256 of the frames (additional columns in the figure). To
generate varied durations for each of these instances, we use a
LogNormal distribution with a target mean of 700 frames. This
creates a set of durations where the shortest one is around 50
frames and the longest is around 5000 frames. To change the
average duration we simply multiply or divide all durations
by powers of 7, to get average durations of 700/49 = 14,
700/7 = 100, 700, 700× 7 = 4900. These correspond to the
rows in Figure 3.

Once we have fixed these parameters, the different algo-
rithms proceed by sampling frames, and we track the instances
that were found (y axis of subplots) as we increase the number
of samples we processed (x axis). For ExSample, we divide
the frames into 128 chunks. We run each experiment 21
times. In Figure 3 we show the median trajectory (solid line)
as well as a confidence band computed from the 25th to
the 75th percentile (shaded). Additionally, the dashed lines
show the expected N following the optimal allocation for
each n, computed using the formula in Eq. IV.1. ExSample
and random start off similarly, which is expected because
ExSample starts by sampling uniformly at random. As sam-
ples accumulate ExSample’s trajectory moves more and more
toward the dashed blue line which represents the expected N
if the allocation of samples across chunks was optimal from
the beginning. We can see ExSample generally outperforms
random, but performs similarly in two cases: 1) when there
is very little skew in the locations of results (top row of figure)

and 2) when results are very rare, which makes getting to the
first result equally difficult for both (left column of figure).

C. Number of chunks

The way we split the dataset into chunks is an external
parameter that affects the performance of ExSample. We
consider two extremes: 1) Suppose we have a single chunk.
This makes ExSample equivalent to random sampling. Fewer
chunks reduce ExSample ability to exploit any skew. For
example, the extreme case using two chunks imposes a hard
ceiling on savings of 2×, even if the skew is much larger. 2)
On the opposite extreme, one chunk per image frame would
also be equivalent to random sampling but for a different
reason: In this case, picking a chunk is equivalent to picking
a frame. Since there is no data initially about any chunks,
Thompson sampling is equivalent to random sampling. There-
fore, the extreme cases are clearly not practical and the choice
of chunks can affect savings in principle. In this section we
explore this problem through simulation and we find we can
vary the number of chunks across three orders of magnitude,
while still remaining efficient.

In Figure 4 we show how ExSample behaves for a range of
chunk scenarios spanning several orders of magnitude. In this
simulation, we fix instance skew as defined before to 32 and
pi to a mean duration of 700 frames, the same values as the
third column and third row of Figure 3. We vary the number
of chunks from 1 to 1024. Dashed lines show the number
of instances found when using (static) optimal weights from
Eq. IV.1, computed as a function of the x axis. The more
chunks there are, the steeper the dashed lines because we
have exact knowledge of frame distribution and can exploit
skew at smaller time scales. Solid lines in Figure 4 show the
median performance of ExSample under the same chunk and
data settings, but without knowledge ahead of time. Notably,
increasing the number of chunks can decrease performance:
for example, going from 128 to 1024 chunks shows a decrease,
even though both have similar optimal allocation (dashed)
curves. As we increase the number of chunks M , we also
increase the number of samples ExSample needs to take just to
be able to tell which chunks are more promising: for example,
when working with 1024 chunks, just for each chunk to be
sampled once we would need to allocate 1024 samples, and
this by itself would be too little information about which
chunks are more promising. We note that in our simulation
we varied the number of chunks by three orders of magnitude
and still see a benefit of chunking versus random across all
settings; however, the benefits are non monotonic.

V. EVALUATION

Our goals for this evaluation are to demonstrate the benefits
of ExSample on real data compared to alternatives, including
random sampling and proxy models. We show that, on these
challenging datasets, ExSample achieves savings of up to 6x
over random sampling. We also show that by avoiding the
large upfront cost of scoring every frame in the dataset with a

8

1

10

100

1k2k

nu
m

be
r o

f d
ist

in
ct

 in
st

an
ce

s f
ou

nd
 (o

ut
 o

f 2
00

0)

no instance skew

0.79x

random this work

skewed toward
1/4 of dataset

1.4x

skewed toward
1/32 of dataset

3.9x

skewed toward
1/256 of dataset

m
ean duration
14 fram

es8.5x

1

10

100

1k2k

1.1x
0.98x

0.89x
2.2x

2.6x
12x

m
ean duration
100 fram

es

4.7x
29x

1

10

100

1k2k

0.88x
 1x

 1x

1.4x
2.5x

3.2x

3.6x
15x

24x m
ean duration
700 fram

es

6.1x
26x

84x

10 100 1k 10k
1

10

100

1k2k

0.97x
0.98x

1.1x

10 100 1k 10k

0.89x
 2x

2.6x

10 100 1k 10k

1.2x
7.8x

14x

10 100 1k 10k
number of frames sampled (out of 16 Million)

m
ean duration

4900 fram
es

8.1x
14x

37x

Fig. 3: Simulated savings in frames from ExSample range from 1x to 84x, depending on instance skew (increasing skew from
left to right, starting with no skew), and on the average duration of a instance in frames (increasing from top to bottom). Solid
lines show the median frames sampled by ExSample and random. Shaded areas mark 25–75 percentile. We label with text
the savings in samples needed to reach 10, 100, and 1000 results. The dashed blue line shows the expected results if samples
were allocated optimally based on perfect prior knowledge of chunk statistics. The dashed red line shows the expected results
from random. For a complete explanation see Section IV-B.

0 10000 20000 30000
frames sampled (out of 16 Million)

0

500

1000

1500

2000

in
st

an
ce

s f
ou

nd

1024 128 16 2 random

Fig. 4: Varying the number of chunks for a fixed workload. For
2 and 16 chunks, the dashed lines corresponding to optimal
sample allocation using Eq. IV.1 match closely with results
using ExSample on the simulated data. For 128, and even
more so for 1024 chunks, there is a noticeable gap between
the dashed and solid lines.

query-specific proxy model, ExSample/ is able to find results
quicker.

A. Experimental Setup

Baselines. We compare ExSample against two of the baselines
discussed in Section II-B: 1) uniform random sampling and
2) state-of-the-art representative of the proxy model idea
(BlazeIt) [10]. BlazeIt is a state-of-the-art video processing
system that processes several different types of queries, in-
cluding queries with more complex predicates and aggregates.
In this evaluation we are only concerned with how a system
like BlazeIt, as a representative of proxy-based approaches,
handles the specific case of distinct object queries.

Implementation. Random sampling: BlazeIt and ExSample
are at their core sampling loops where the choice of which
frame to process next is based on an algorithm-specific de-
cision. Random simply chooses the next frame randomly.
ExSample chooses based on Algorithm 1. Proxy-based ap-
proaches such as BlazeIt choose the frame with the next
highest score; these scores are pre-computed by running a
query-specific proxy model over every frame of the dataset.

We implement this sampling loop in Python, using PyTorch
to run inference on a GPU. For the object detector, we use
Faster-RCNN with a ResNet-50 backbone. To achieve fast,
random access frame-decoding rates we use the Hwang library
from the Scanner project [20], and re-encode our video data
to insert keyframes every 20 frames.

Datasets. We use six different datasets in this evaluation,
which we call dashcam, BDD-1k, BDD MOT, archie, ams-

9

terdam, and night-street. The dashcam dataset consists of 10
hours of video, or over 1.1 million video frames, collected
from a dashcam over several drives in cities and highways.
Each drive can range from around 20 minutes to several
hours. Drives longer than 20 minutes are split into 20 minute
chunks. The BDD dataset used for this evaluation consists
of a random sample of 1000 random video clips from the
Berkeley Deep Drive Dataset [1]. Because BDD video clips
are less than one minute long, we are forced to use each
small clip as an individual chunk for a total of 1000 chunks.
This constraint makes it a challenging scenario for ExSample,
as we explained in section IV. BDD MOT (multi-object
tracking) is a different subset of the BDD dataset of 1600 short
clips of about 200 frames each. Unlike the other datasets, it
manually labelled ground truth, including instance ids. The
other three datasets: archie, amsterdam, and night-steet are
video from fixed cameras overlooking urban locations. Each
consists of 20 hours of video. These datasets are used in the
evaluation of related work on optimizing (other) types of video
queries on static camera datasets [6], [10], [21]. We also use
20 minute chunks for these datasets, for a total of about 60
chunks. There are two important differences between static
camera and moving camera settings: 1) In the moving camera
setting there is more room for instance skew depending on
how the scenery changes over time (for example, the BDD
dataset includes data from multiple cities and countries, as
well as from highway, suburban and urban settings). 2) For
proxy model based approaches, the moving camera setting is
also more challenging to create an accurate proxy model for
because the background changes constantly and the inputs to
the proxy model vary more widely in appearance.
Queries and ground truth We picked between six and eight
objects for each of the datasets based on what they show. None
of the datasets have human-generated object instance labels
that identify objects over time. Therefore, we approximate
ground truth by sequentially scanning every video in the
dataset and running each frame through a reference object
detector (we reuse the Faster-RCNN model that we apply
during query execution). If any objects are detected, we match
the bounding boxes with those from previous frames and
resolve which correspond to the same instance. To match
objects across neighboring frames, we employ an Intersection
over Union (IoU) matching approach similar to SORT [15].
IoU matching is a simple baseline for multi-object tracking
that leverages the output of an object detector and matches
detection boxes based on overlap across adjacent frames. For
all datasets we found we needed to fine-tune the object detector
and the IoU matching to get to a reasonable quality ground
truth. This process involved manually annotated around a
hundred frames for each of archie, amsterdam, and night-
street, retraining Faster-RCNN and then running it over the
full datasets to get better quality ground truth. For BDD and
dashcam we fine-tuned Faster-RCNN with the BDD labels.
For these three datasets we use object types, including but not
limited to those used in [10].
In addition to searching for different object classes, we also

vary the limit parameter recall of 10%, 50% and 90%, where
recall is the fraction of distinct instances found. These recall
rates are meant to represent different kinds of applications:
10% represents a scenario where an autonomous vehicle data
scientist is looking for a few test examples, whereas a higher
recall like 90% would be more useful in an urban planning or
mapping scenario where finding most objects is desired.

B. Results: sampling immediately vs. proxy scoring overhead

The main advantage of ExSample with respect to using a
proxy model that first scores frames is that ExSample requires
no prior scoring phase, and therefore avoids a costly scan over
the full video dataset. In Table I we show for all queries
ExSample will reach .9 recall before a proxy model has
finished scoring the dataset. ExSample reaches .1 and .5 recall
orders of magnitude faster because the proxy model needs to
score everything before it offers results, as it relies on returning
the highest scoring frames to maximize its accuracy.

The totals in Table I were computed by measuring the
scoring throughput we can sustain on our equipment (100
frames per second, bound by io+decode), and then estimating
the time it would take to fully scan the dataset. For sampling,
we measure how many frames ExSample needs to sample and
process in that time and check how many results it would find,
knowing from measurements that ExSample processes frames
at a rate of 20 frames per second, bound by the object detector
throughput. Proxy scoring times reach up to 10 hours; this is
the reason we prefer to estimate the time rather than implement
and run it fully for each of the 34 queries we evaluate, as each
would take hours to run.

C. Time savings vs. recall level

The previous section showed the time it takes us to compute
proxy scores for a whole dataset can be more than enough time
for a weighted sampling like ExSample to find most results
in the data. Now we are interested in showing how much
time ExSample saves on real data to reach different levels
of recall compared to random, neither of which has a proxy
score computation overhead, and hence can produce results
immediately. We show results for three levels of recall over
instances: .1, .5 and .9 in Figure 5. The maximum is around
6x (leftmost) and the worst case (rightmost) is .75x for boats.
The .9 percentile over the 100 bars in the plot is 3.7x and the
.1 percentile is 1.2. The geometric mean of savings overall is
1.9 across all vertical bars.

Figure 6 shows what the chunks for the more extreme cases
of Figure 5 look like in terms of skew and abundance. For
example, bicycle on the dashcam dataset shows very large
skew, which explains why it can achieve results of 3.7x. Next
we have motorcycle in BDD, which even though has very
large skew, has relatively low savings of 2x. The reason for
the moderate gain is the large amount of chunks in the BDD
dataset; it takes a while for ExSample to sample all of them,
so it takes a while to notice and take advantage of the skew.
Figure 5 shows the bar for motorcycle (“motor” under the
BDD color) reaches a savings of 3x at recall .5, but has

10

(% instances) 10 50 90
proxy

dataset (scan) category

BDD 1k 54m bike 1m37s 8m57s 41m
bus 1m17s 10m38s 49m
motor 1m38s 8m53s 46m
person 52s 6m46s 36m
rider 1m31s 10m14s 45m
traffic light 1m33s 12m18s 50m
traffic sign 1m38s 14m 58m
truck 1m8s 10m39s 50m

BDD MOT 53m bicycle 52s 6m51s 35m
bus 31s 3m18s 21m
car 1m31s 8m21s 30m
motorcycle 49s 6m38s 39m
pedestrian 41s 4m51s 24m
rider 59s 6m17s 32m50s
trailer 37s 3m54s 38m
train 18s 3m 32m
truck 36s 3m57s 20m36s

amsterdam 9h50m bicycle 1m10s 8m42s 39m
boat 2s 14s 4m
car 45s 7m 23m33s
dog 1m51s 12m46s 1h49m
motorcycle 5m21s 24m58s 2h18m
person 29s 4m20s 21m39s
truck 46s 9m 39m

archie 9h49m bicycle 1m4s 8m 43m
bus 1m 6m47s 58m
car 46s 4m36s 10m35s
motorcycle 3m10s 22m 1h57m
person 1m5s 7m32s 50m
truck 1m36s 13m41s 1h21m

dashcam 2h54m bicycle 32s 5m38s 1h
bus 1m11s 26m 2h58m
fire hydrant 1m40s 16m 1h15m
person 20s 4m22s 1h8m
stop sign 45s 20m26s 2h27m
traffic light 26s 7m 1h21m
truck 2m17s 28m37s 2h58m

night street 8h bus 1m27s 9m55s 52m
car 12s 2m21s 11m
dog 2m34s 18m45s 3h39m
motorcycle 9m13s 1h52m 7h31m
person 14s 1m55s 15m
truck 1m10s 9m59s 1h4m

TABLE I: Time for the scanning component of a proxy based
approach vs. time taken by ExSample. Across all queries
and datasets, it is cheaper to reach 90% of instances using
ExSample sampling than it is to scan and score frames prior to
sampling, and much easier to reach 10% and 50% of instances.
A separate comparison between randomand ExSample is
shown in Figure 5

savings of less than 2x early on, likely because it takes time
to identify the skew. Finally, “boat” in the amsterdam dataset,
the worse performing query, and “car” in the archie dataset
have very low skew, meaning randomshould do just as well.
The person in the night-street (aka town-square) dataset has
moderate amounts of skew and ExSample is able to exploit it.

Figure 5 shows ExSample produces robust gains across 5
datasets and a total of 34 queries, while Table I shows that even
a perfect proxy adds too much overhead. Therefore, by the
time we have scored frames for a new object class, we could
have already sampled a lot of the individual instances. Part of
the reason this is possible is because even the scoring model
scores every frame; whereas, ExSample samples individual

1

1.5
2

3
4
5
6

sa
vi

ng
s r

at
io

 (l
og

)

pe
rs

on
bi

cy
cle

st
op

 si
gn

tra
ffi

c
lig

ht
fir

e
hy

dr
an

t
pe

rs
on

pe
rs

on
bu

s
pe

de
st

ria
n

m
ot

or
cy

cle
tru

ck
ca

r
tru

ck
bi

ke
bi

cy
cle

m
ot

or
tru

ck
tra

ile
r

rid
er

do
g

bu
s

bu
s

bi
cy

cle
bi

cy
cle

tru
ck

tra
ffi

c
lig

ht
tru

ck
do

g
pe

rs
on

m
ot

or
cy

cle
bu

s
pe

rs
on

rid
er

m
ot

or
cy

cle
m

ot
or

cy
cle

tra
ffi

c
sig

n
ca

r
ca

r
tru

ck
bu

s
tra

in
ca

r
bo

at

0.1
dataset

BDD 1k
BDD MOT

amsterdam
archie

dashcam
night street

1

1.5
2

3
4
5
6

bi
cy

cle
pe

rs
on

tra
ffi

c
lig

ht
pe

rs
on

fir
e

hy
dr

an
t

pe
rs

on
m

ot
or

bi
ke

pe
de

st
ria

n
st

op
 si

gn
rid

er
tra

ile
r

bu
s

bu
s

tru
ck

do
g

bi
cy

cle
m

ot
or

cy
cle

tra
ffi

c
lig

ht
do

g
ca

r
tru

ck
tru

ck
tru

ck
bu

s
rid

er
bi

cy
cle

m
ot

or
cy

cle
tra

ffi
c

sig
n

bu
s

ca
r

pe
rs

on
pe

rs
on

bi
cy

cle
tru

ck
tru

ck
m

ot
or

cy
cle

ca
r

tra
in

m
ot

or
cy

cle
ca

r
bu

s
bo

at

0.5

1

1.5

2

3

4

bi
cy

cle
fir

e
hy

dr
an

t
pe

rs
on

tra
ffi

c
lig

ht
pe

rs
on

pe
rs

on
pe

de
st

ria
n

bi
ke

rid
er

ca
r

ca
r

st
op

 si
gn

m
ot

or
ca

r
bu

s
tra

ffi
c

lig
ht

bu
s

pe
rs

on
tru

ck
bi

cy
cle

bi
cy

cle
tru

ck
tru

ck
ca

r
bi

cy
cle

m
ot

or
cy

cle
m

ot
or

cy
cle

rid
er

pe
rs

on
tra

ffi
c

sig
n

tru
ck

tru
ck

m
ot

or
cy

cle
do

g
bu

s
tru

ck
bu

s
do

g
m

ot
or

cy
cle

bu
s

bo
at

tra
ile

r
tra

in

0.9

Fig. 5: Time savings ratio when using ExSample vs. random
for all queries. The top panel corresponds to time savings to
reach .1 of all instances, the middle panel to time savings for
reaching .5, and the bottom panel to reach .9.

frames and avoids sampling frames likely to return existing
results. If individual instances last longer, then ExSample will
naturally get a large number of instances without needing
to look at too many frames. random sampling also has
this property, but Figure 5 shows ExSample will out-compete
random sampling as well.

N

S= 14
savings=7

A-dashcam/bicycle
N= 249

S= 19
savings=2

B-bdd1k/motor
N= 509

S=4.5
savings=3

C-night street/person
N= 2078

S=1.1
savings=1

D-archie/car
N=33546

chunk

S=1.6
savings=0.9

E-amsterdam/boat
N= 588

Fig. 6: Instance skew and savings for a few representative
queries from Figure 5. Each vertical bar on these plots corre-
sponds to a chunk, and its height is proportional to number of
instances. Blue colored bars are the minimum set of chunks
that cover half the instances. S is our skew metric defined in
subsection IV-B

11

VI. RELATED WORK

Video Data Management. There has recently been renewed
interest in developing data management systems for video
analytics due to the high cost of applying state-of-the-art video
understanding methods, which almost always involve deep-
neural networks, on large datasets. Recent systems adapt prior
work in visual data management [22], [23] for modern tasks
that involve applying machine learning techniques to extract
insights from large video datasets potentially comprising of
millions of hours of video. In particular, DeepLens [24] and
VisualWorldDB [25] explore a wide range of opportunities that
an integrated data management system for video data would
enable. DeepLens [24] proposes an architecture split into
storage, data flow, and query processing layers, and considers
tradeoffs in each layer – for example, the system must choose
from several storage formats, including storing each frame as
a separate record, storing video in an encoded format, and
utilizing a hybrid segmented file. VisualWorldDB proposes
storing and exposing video data from several perspectives as
a single multidimensional visual object, achieving not only
better compression but also faster execution.

Speeding up Video Analytics. Several optimizations have
been proposed to speed up execution of various components
of video analytics systems to address the cost of mining
video data. Many recent approaches train specialized proxy
classification models on reduced dimension inputs derived
from the video [5]–[9]. As we detailed in Section II-B, most
related to our work is BlazeIt [10], which adapts proxy-based
video query optimization techniques for object search limit
queries.

Video analytics methods employing proxy models are
largely orthogonal to our work: We can apply ExSample to
sample frames, while still leveraging a cascaded classifier
so that expensive models are only applied on frames where
fast, proxy models have sufficient confidence. The extensions
to limit queries proposed to BlazeIt are not orthogonal, as
they involve controlling the sampling method, but a fusion
sampling approach that combines ExSample with BlazeIt may
be possible. Nevertheless, a major limitation of BlazeIt is that
it requires applying the proxy model on every video frame,
even for limit queries; as we showed in Section V, this presents
a major bottleneck that can make BlazeIt slower on limit
queries than random sampling.

Besides methods employing proxy models, several ap-
proaches, such as Chameleon [21] as well as [26]–[28],
consider tuning optimization knobs such as the neural network
model architecture, input resolution, and sampling framerate
to achieve the optimal speed-accuracy tradeoff. Like proxy
models, these approaches are orthogonal to ExSample and can
be applied in conjunction.

An alternative approach altogether is to create an index of
the dataset ahead of time. For queries on video, this could be
done using a multi-use proxy embedding model. [29] trains a
convolutional model to be reusable for multiple tasks. Part of
the motivation is to avoid the repeated per-query scan overhead

that makes some of the approaches based on proxy models
be very expensive; however, it requires some ahead of time
knowledge of the queries that will be run. ExSample targets the
problem of working with a dataset that has not been indexed
ahead of time on ad-hoc queries, usable as long as there is a
black-box detector to specify what is sought within the dataset.

Speeding up Object Detection. Accelerating video ana-
lytics by improving model inference speed has been exten-
sively studied in the computer vision community. Because
these methods optimize speed outside of the context of a
specific query, they are orthogonal to our approach and can be
straightforwardly incorporated. Several general-purpose tech-
niques improve neural network inference speed by pruning
unimportant connections [30], [31] or by introducing models
that achieve high accuracy with fewer parameters [32], [33].
Coarse-to-fine object detection techniques first detect objects
at a lower resolution, and only analyze particular regions of
a frame at higher resolutions if there is a large expected
accuracy gain [34], [35]. Cross-frame feature propagation
techniques accelerate object tracking by applying an expensive
detection model only on sparse key frames, and propagating
its features to intermediate frames using a lightweight optical
flow network [36], [37].

VII. FUTURE WORK

Two areas for future work are automating chunking and
integrating some benefits from scoring while avoiding scans
of the dataset.

For scoring. We note the equations in section III remain
valid even if sampling within a chunk is non-uniform but
based on a score. The current downside of scoring frames is
the scanning component; therefore, a key to integrating these
approaches would be a form of predictive scoring of frames
that avoids scanning.

VIII. CONCLUSION

In this paper we introduced ExSample, a method for pro-
cessing distinct object-search queries on video repositories
through chunk-based adaptive sampling. The aim of the ap-
proach is to find frames of video that contain objects of
interest, without running an expensive object-detection algo-
rithm on every frame. ExSample approaches the sampling
problem by partitioning the data into chunks and adjusting
the frequency of samples for each chunks based on the rate at
which new objects are sampled from each chunk. We formulate
this sampling process as an instance of Thompson sampling,
and explicitly estimate the probability of finding a new object
in a future random frame for each chunk. As results in a
particular chunk are found, ExSample allocates more samples
to that chunk; and as new results are exhausted, ExSam-
ple naturally refocuses its sampling on other less frequently
sampled chunks. Our evaluation of ExSample on real world
datasets shows it provides consistent savings without requiring
an expensive scan of the data.

12

REFERENCES

[1] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and
T. Darrell, “BDD100K: A diverse driving video database with scalable
annotation tooling,” CoRR, vol. abs/1805.04687, 2018. [Online].
Available: http://arxiv.org/abs/1805.04687

[2] T. Murray, “Help improve imagery in your area with our
new camera lending program,” https://www.openstreetmap.us/2018/05/
camera-lending-program/, 2018.

[3] Nexar, “Nexar,” https://www.getnexar.com/company, 2018.
[4] AWS, “Amazon EC2 on-demand pricing,” https://aws.amazon.com/ec2/

pricing/on-demand, accessed: 2020-09-10.
[5] F. Bastani, S. He, A. Balasingam, K. Gopalakrishnan, M. Alizadeh,

H. Balakrishnan, M. Cafarella, T. Kraska, and S. Madden, “Miris: Fast
object track queries in video,” in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, 2020, pp. 1907–1921.

[6] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,
M. Philipose, P. B. Gibbons, and O. Mutlu, “Focus: Querying large video
datasets with low latency and low cost,” in 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), 2018,
pp. 269–286.

[7] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “NoScope:
Optimizing neural network queries over video at scale,” Proc. VLDB
Endow., vol. 10, no. 11, pp. 1586–1597, Aug. 2017. [Online]. Available:
https://doi.org/10.14778/3137628.3137664

[8] N. Koudas, R. Li, and I. Xarchakos, “Video monitoring queries,” in
2020 IEEE 36th International Conference on Data Engineering (ICDE).
IEEE, 2020, pp. 1285–1296.

[9] Y. Lu, A. Chowdhery, S. Kandula, and S. Chaud-
huri, “Accelerating machine learning inference with prob-
abilistic predicates.” ACM SIGMOD, June 2018. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
accelerating-machine-learning-queries-with-probabilistic-predicates/

[10] D. Kang, P. Bailis, and M. Zaharia, “Blazeit: Fast exploratory video
queries using neural networks,” CoRR, vol. abs/1805.01046, 2018.
[Online]. Available: http://arxiv.org/abs/1805.01046

[11] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
CoRR, vol. abs/1804.02767, 2018. [Online]. Available: http://arxiv.org/
abs/1804.02767

[12] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask
R-CNN,” CoRR, vol. abs/1703.06870, 2017. [Online]. Available:
http://arxiv.org/abs/1703.06870

[13] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick,
J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft
COCO: common objects in context,” CoRR, vol. abs/1405.0312, 2014.
[Online]. Available: http://arxiv.org/abs/1405.0312

[14] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi,
I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy,
“Speed/accuracy trade-offs for modern convolutional object detectors,”
CoRR, vol. abs/1611.10012, 2016. [Online]. Available: http://arxiv.org/
abs/1611.10012

[15] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” CoRR, vol. abs/1602.00763, 2016. [Online].
Available: http://arxiv.org/abs/1602.00763

[16] O. Moll, F. Bastani, S. Madden, M. Stonebraker, V. Gadepally, and
T. Kraska, “ExSample: Efficient searches on video repositories through
adaptive sampling (technical report),” https://github.com/orm011/tmp/
blob/master/techreport.pdf, September 2020.

[17] D. Russo, B. V. Roy, A. Kazerouni, and I. Osband, “A tutorial
on thompson sampling,” CoRR, vol. abs/1707.02038, 2017. [Online].
Available: http://arxiv.org/abs/1707.02038

[18] E. Kaufmann, “On bayesian index policies for sequential resource
allocation,” Ann. Stat., vol. 46, no. 2, pp. 842–865, Apr. 2018.

[19] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[20] A. Poms, W. Crichton, P. Hanrahan, and K. Fatahalian, “Scanner:
Efficient video analysis at scale,” ACM Trans. Graph., vol. 37,
no. 4, pp. 138:1–138:13, Jul. 2018. [Online]. Available: http:
//doi.acm.org/10.1145/3197517.3201394

[21] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: Scalable adaptation of video analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, 2018, pp. 253–266.

[22] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic et al., “Query by image and
video content: The QBIC system,” Computer, vol. 28, no. 9, pp. 23–32,
1995.

[23] V. E. Ogle and M. Stonebraker, “Chabot: Retrieval from a relational
database of images,” Computer, vol. 28, no. 9, pp. 40–48, 1995.

[24] S. Krishnan, A. Dziedzic, and A. J. Elmore, “Deeplens: Towards a visual
data management system,” in Conference on Innovative Data Systems
Research (CIDR), 2019.

[25] B. Haynes, M. Daum, A. Mazumdar, M. Balazinska, A. Cheung, and
L. Ceze, “VisualWorldDB: A dbms for the visual world.” in CIDR, 2020.

[26] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “VideoEdge: Processing camera streams
using hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2018, pp. 115–131.

[27] R. Xu, J. Koo, R. Kumar, P. Bai, S. Mitra, G. Meghanath, and S. Bagchi,
“ApproxNet: Content and contention aware video analytics system for
the edge,” arXiv preprint arXiv:1909.02068, 2019.

[28] T. Xu, L. M. Botelho, and F. X. Lin, “VStore: A data store for analytics
on large videos,” in Proceedings of the Fourteenth EuroSys Conference,
2019, pp. 1–17.

[29] D. Kang, J. Guibas, P. Bailis, T. Hashimoto, and M. Zaharia, “Task-
agnostic indexes for deep learning-based queries over unstructured data,”
Sep. 2020.

[30] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in International Conference on Learning Representations, 2016.

[31] G. Leclerc, R. C. Fernandez, and S. Madden, “Learning network size
while training with ShrinkNets,” in Conference on Systems and Machine
Learning, 2018.

[32] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017. [Online]. Available: http://arxiv.org/abs/1704.04861

[33] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[34] M. Gao, R. Yu, A. Li, V. I. Morariu, and L. S. Davis, “Dynamic zoom-in
network for fast object detection in large images,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 6926–6935.

[35] M. Najibi, B. Singh, and L. S. Davis, “Autofocus: Efficient multi-scale
inference,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 9745–9755.

[36] X. Zhu, J. Dai, L. Yuan, and Y. Wei, “Towards high performance video
object detection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 7210–7218.

[37] X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei, “Deep feature flow for
video recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 2349–2358.

13

http://arxiv.org/abs/1805.04687
 https://www.openstreetmap.us/2018/05/camera-lending-program/
 https://www.openstreetmap.us/2018/05/camera-lending-program/
https://www.getnexar.com/company
https://aws.amazon.com/ec2/pricing/on-demand
https://aws.amazon.com/ec2/pricing/on-demand
https://doi.org/10.14778/3137628.3137664
https://www.microsoft.com/en-us/research/publication/accelerating-machine-learning-queries-with-probabilistic-predicates/
https://www.microsoft.com/en-us/research/publication/accelerating-machine-learning-queries-with-probabilistic-predicates/
http://arxiv.org/abs/1805.01046
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1611.10012
http://arxiv.org/abs/1611.10012
http://arxiv.org/abs/1602.00763
https://github.com/orm011/tmp/blob/master/techreport.pdf
https://github.com/orm011/tmp/blob/master/techreport.pdf
http://arxiv.org/abs/1707.02038
http://doi.acm.org/10.1145/3197517.3201394
http://doi.acm.org/10.1145/3197517.3201394
http://arxiv.org/abs/1704.04861

	I Introduction
	II Background
	II-A Object Detection
	II-B Distinct Object Queries

	III ExSample
	III-A Scoring a Single Chunk
	III-B Picking the best chunk under uncertainty
	III-C Thompson Sampling
	III-D Empirical Validation
	III-E Algorithm
	III-F Other Optimizations

	IV Determinants of ExSample limits
	IV-A Optimal chunk weights
	IV-B Instance skew across chunks
	IV-C Number of chunks

	V Evaluation
	V-A Experimental Setup
	V-B Results: sampling immediately vs. proxy scoring overhead
	V-C Time savings vs. recall level

	VI Related Work
	VII Future Work
	VIII Conclusion
	References

