
260

SeeSaw: Interactive Ad-hoc Search Over Image Databases

OSCAR MOLL,MIT CSAIL, USA
MANUEL FAVELA,MIT, USA
SAMUEL MADDEN,MIT CSAIL, USA
VIJAY GADEPALLY,MIT Lincoln Laboratory, USA
MICHAEL CAFARELLA,MIT CSAIL, USA

As image datasets become ubiquitous, the problem of ad-hoc searches over image data is increasingly important.
Many high-level data tasks in machine learning, such as constructing datasets for training and testing object
detectors, imply finding ad-hoc objects or scenes within large image datasets as a key sub-problem. New
foundational visual-semantic embeddings trained on massive web datasets such as Contrastive Language-
Image Pre-Training (CLIP) can help users start searches on their own data, but we find there is a long tail of
queries where these models fall short in practice. SeeSaw is a system for interactive ad-hoc searches on image
datasets that integrates state-of-the-art embeddings like CLIP with user feedback in the form of box annotations
to help users quickly locate images of interest in their data even in the long tail of harder queries. One key
challenge for SeeSaw is that, in practice, many sensible approaches to incorporating feedback into future
results, including state-of-the-art active-learning algorithms, can worsen results compared to introducing
no feedback, partly due to CLIP’s high-average performance. Therefore, SeeSaw includes several algorithms
that empirically result in larger and also more consistent improvements. We compare SeeSaw’s accuracy to
both using CLIP alone and to a state-of-the-art active-learning baseline and find SeeSaw consistently helps
improve results for users across four datasets and more than a thousand queries. SeeSaw increases Average
Precision (AP) on search tasks by an average of .08 on a wide benchmark (from a base of .72), and by a .27 on
a subset of more difficult queries where CLIP alone performs poorly.

CCS Concepts: • Information systems→ Image search.

Additional Key Words and Phrases: image retrieval, image search, machine learning, multi-modal embeddings,
relevance feedback, active search, data exploration

ACM Reference Format:
Oscar Moll, Manuel Favela, Samuel Madden, Vijay Gadepally, and Michael Cafarella. 2023. SeeSaw: Interactive
Ad-hoc Search Over Image Databases. Proc. ACM Manag. Data 1, 4 (SIGMOD), Article 260 (December 2023),
26 pages. https://doi.org/10.1145/3626754

1 INTRODUCTION
Increasingly inexpensive cameras and storage make it ever easier to collect image data. Large
quantities of video and images are now captured from dedicated cameras as well as mobile phones,
vehicles, and drones. Nevertheless, the ability of an engineer or team to explore their own image
data and discover ad-hoc items of interest lags far behind their ability to collect that data.

For example, an engineer at an autonomous vehicle company with a large repository of data may
wish to find examples of people in wheelchairs to extend an object detector or to find examples of
bikes in the snow to test an existing detector. Or, an ornithology researcher may want to search

Authors’ addresses: Oscar Moll, orm@csail.mit.edu, MIT CSAIL, Cambridge, MA, USA; Manuel Favela, mfavela@alum.mit.
edu, MIT, Cambridge, MA, USA; Samuel Madden, madden@csail.mit.edu, MIT CSAIL, USA; Vijay Gadepally, vijayg@ll.mit.
edu, MIT Lincoln Laboratory, USA; Michael Cafarella, michjc@csail.mit.edu, MIT CSAIL, USA.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
2836-6573/2023/12-ART260
https://doi.org/10.1145/3626754

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

HTTPS://ORCID.ORG/0000-0002-4598-2808
https://doi.org/10.1145/3626754
https://orcid.org/0000-0002-4598-2808
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626754

260:2 Oscar Moll et al.

their camera archives to know which of all their camera locations seem to show more sightings of
a particular type of bird [20, 46, 50].

Whether the goal is to extend the capabilities of an object detector model, to enhance test cases
for existing models, or simply to explore a large trove of image data, finding relevant images within
a dataset of images or video is a key problem for many users. For example, depending on the dataset,
wheelchairs or bikes in the snow may be rare, appearing in only one in a thousand images or less.
Hence, ad-hoc searches can be challenging without efficient image search tools.
A well-known high-level approach to the search problem is representing the contents of the

database as well as the queries as vectors: a text query becomes a query vector 𝑞, and an image in the
database becomes an image vector 𝑥 , and the relevance of an image 𝑥 to a query 𝑞 is estimated by its
inner product 𝑞 · 𝑥 , which measures the geometric alignment of the query and the database element
(every vector is unit normed). The most relevant results for a query vector 𝑞 are the solution to
argmax𝑥 𝑥 ·𝑞, the elements with a maximum inner product with 𝑞. One advantage of this modeling
approach is the availability of scalable and low-latency vector stores. These stores create an index
of all vectors 𝑥 ahead of time and then solve the search at query time without a full scan of the
database of 𝑥 , enabling interactive searches for any query.
This vector paradigm relies on mapping queries and images to vectors, and the deep learning-

basedmethod to achieve the goal of mapping images and text to vectors today is through cross-modal
or visual-semantic embeddings [7, 14, 15, 22, 38]. The accuracy of this approach depends on the
quality of the cross-modal embedding used to capture the important concepts in an image.
State-of-the-art cross-modal embedding models consist of large neural networks trained on

massive datasets of corresponding image-text pairs. A notable example is CLIP [37], which is a
model pre-trained on a crawl of hundreds of millions of web images and their alt-text attributes
as a low cost proxy for a caption.

Zero-shot CLIP. With CLIP, users can often cold start many searches using text alone in new
datasets without fine-tuning any model, an approach called zero-shot learning. Zero-shot CLIP is
surprisingly accurate even when used on datasets it was not trained on, including many of our
evaluation datasets.

Limitations of existing approaches. In the case of CLIP, despite the high average zero-shot
quality of the model, the quality of the results on a specific dataset varies substantially between
queries. For example, using CLIP embeddings on the Berkeley Deep Drive (BDD) dataset [51] of
street scenes, we can easily find scenes with bicycles. For wheelchairs, however, which only occur
in a handful of scenes, using CLIP alone requires looking through more than 100 images before the
first wheelchair is found. Figure 1 shows the accuracy distribution in queries from four evaluation
datasets, measured as AP, a common accuracy metric. The step on the right edge for each dataset
corresponds to a substantial number of queries with optimal results (𝐴𝑃 = 1). The trailing slope
on the left shows a long tail of queries with lower accuracy. The annotations on the dashed line
quantify the fraction and amount of queries with 𝐴𝑃 < .5 using zero-shot CLIP, which is large in
some of the datasets. We note that the “queries” used in these plots correspond only to labeled
categories in these datasets. From a user’s point of view, the plotted distribution is not as relevant as
the distribution seen on their queries of interest; i.e., high accuracy on bicycles does not compensate
for poor results on wheelchair if that is the query of interest.

Query alignment. CLIP sometimes provides low-relevance results for two reasons. First, the
CLIP embedding of the string (e.g., “wheelchair”) may not be close enough to the relevant image
vector embeddings; we call this a query alignment deficit. Figure 2a shows a visual representation of
lack of query alignment: all the image vectors, represented as circles arranged along an imaginary

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

SeeSaw: Interactive Ad-hoc Search Over Image Databases 260:3

.38 (456/1203)

.06 (5/80)

.33 (102/313)

.25 (3/12)

O
bjN

et
B

D
D

LV
IS

C
O

C
O

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Average Precision (AP)

fr
ac

tio
n

of
 q

ue
rie

s
 (

0
to

 1
)

Fig. 1. The solid line plots the cumulative distribution function of Zero-shot CLIP Average Precision (AP)
across four evaluation datasets introduced later. The horizontal dashed line marks the fraction and absolute
number of queries with 𝐴𝑃 < .5, for each dataset.

 misaligned
query vector

alignment deficit

aligned
query vector

(a)

locality deficit

(b)

Relevant image
vector

Other image
vector Query vector

Fig. 2. Two causes of suboptimal search results: alignment deficit (left), and locality deficit (right). Both
circles and arrows are unit norm, lying on the unit sphere (dashed circle).

circular arc (due to image vectors being normalized unit size). The blue colored circles represent
vector embeddings of the relevant images (or, as we introduce later, relevant patches within images),
in this case images of wheelchairs in BDD. The initial query maps, via the string embedding, to the
vector represented by the solid arrow. In the diagram, this initial query vector aligns with the gray
circles at the top more than with the blue circles to the right. Therefore, these non-relevant results
would appear first in a search, ahead of the relevant results, causing difficulties to users.

Concept locality. A second possible problem causing poor results is that embeddings for images
of interest (e.g., wheelchairs) may not be clustered tightly together in the database, as shown in
(Figure 2b). In this diagram, we see that no single query arrow would be able to align well with all
three blue image vectors because they are diffused among non-relevant gray vectors. Regardless of
what vector a user may conjure up, the results will never be wholly relevant. We call this situation a
concept locality deficit. Queries often present both types of deficits, so they benefit from improving
either.

Our solution: SeeSaw. SeeSaw’s goal is to allow users to search their data leveraging embed-
dings such as CLIP and helping users improve their results when needed. Users work in a loop
with SeeSaw providing feedback in the form of boxes around relevant regions of images. This
process results in better-aligned query vectors, such as the dashed line vector in Figure 2a, thereby
improving results. A user interacts with SeeSaw following the pseudo-code of Listing 1: a search

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

260:4 Oscar Moll et al.

starts with a text string, which is converted the text into a vector value 𝑞0 using an embedding
model like CLIP (line 2). 𝑞0 is used as the query vector for a lookup operation into the vector store
(line 2), which locates the most relevant vector 𝑥 in the store for the query vector, i.e., the one with
the largest inner product. The corresponding image is presented to the user, who provides feedback.
The query vector is now updated to value 𝑞1 via query_align in line 7, which includes previous
feedback. In the next round, 𝑞 is updated to value 𝑞2, and so on. Ideally, results improve on every
round of feedback. In reality, each loop consists of a batch of a user specified size.

input : text_query
1 feedback_map← {}
2 query_vector← CLIP.embed_string(text_query)
3 while True do
4 img_id← vector_store.lookup(query_vector)
5 img_feedback← UI.show(img_id)
6 feedback_map.update(img_id, img_feedback)
7 query_vector← query_align(feedback_map)
8 end
Listing 1: high-level structure of search with user feedback. SeeSaw focuses on the
logic of query_align

Related work. The general idea of leveraging user feedback to locate results is known as
relevance feedback in information retrieval [24, 41],[32, Ch.9], and as active search within active
learning [16]. However, SeeSaw must address two challenges not present in prior work: first, we
find that basic implementations of query_align as well as state-of-the-art active search [23] can
decrease result relevance when the starting point is zero-shot CLIP, even when all approaches start
with the same high-quality CLIP embeddings. Second, practical approaches also need to provide
interactive latency for large datasets, meaning the computational work needed on every round
should grow sub-linearly with the dataset size, which is not true of state-of-the-art active search
approaches.

SeeSaw insights. SeeSaw addresses both challenges based on three main insights: The first
insight is that we should merge user labels with the original CLIP query rather than relying on
either alone. SeeSaw accomplishes through its implementation of query_align of line 7, within
which it searches for a query vector minimizing a custom loss function. This loss function goes
beyond reflecting accuracy on the observed feedback as a standard supervised-learning approach
would: SeeSaw additionally encourages similarity between the aligned query and the original
embedding of the concept being searched through a novel regularization term, ensuring the CLIP
text query is used for both the initial search and also within the minimization problem. We refer to
this idea as CLIP alignment.

The second insight is that the process to improve the query should reflect the data distribution
of the entire database rather than only that of user feedback: since user feedback data in SeeSaw
up to iteration 𝑡 is based on those vectors in 𝑋𝐷 nearest to 𝑞0, 𝑞1,... and 𝑞𝑡−1, the observed data
is skewed toward this very specific region of the database. One hypothetical way to address this
problem is sampling randomly from the dataset and labeling these nodes, but this approach imposes
labeling requirements on the user, and for many hard-to-find objects this approach would find no
positive examples. SeeSaw cheaply approximates this hypothetical process by adding a second
database-dependent regularization term to the loss function. We show this regularization term
is conceptually equivalent to synthesizing a new training set where elements are instead picked

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

SeeSaw: Interactive Ad-hoc Search Over Image Databases 260:5

randomly and uniformly from the vector database, and their unobserved labels are approximated
through label-propagation[54]. We refer to this as database alignment or DB alignment.

SeeSaw models both CLIP alignment and DB alignment into a loss function that can be quickly
minimized so that SeeSaw can produce a better-aligned query vector with little input from the user
and with low latency, and so that SeeSaw can leverage fast vector stores for search. Moreover, the
amount of work SeeSaw does at query time within the loop in Listing 1 grows only with the size of
the observed dataset, unlike active learning approaches we evaluate that rely on linear time scoring
of the full database after each feedback iteration.

In addition to the above techniques to improve query alignment, SeeSaw employs a third insight:
a multi-vector, multi-scale representation of images derived from separately embedding patches of
different sizes and positions within a single image. This representation is motivated by observing
that in complex images the object of interest may not be the most prominent feature in an image;
this is a common cause of accuracy problems for zero-shot CLIP. This technique is conceptually
simple and orthogonal to CLIP and DB alignment, but in practice, because this representation
multiplies the number of vectors in the database by an order of magnitude, only search techniques
whose latency does not depend linearly on the vector database size can be integrated easily with it.

Contributions. In summary, our contributions are:
(1) We introduce SeeSaw’s custom query alignment algorithms for user-in-the-loop image search:

CLIP alignment combined with database alignment, which provide high quality results with a
fixed and limited amount of user feedback while avoiding any linear time computational costs
at query time that could hinder interactivity on larger datasets.

(2) We combine the query alignment algorithms with a multi-scale feature representation for
images that is possible due to the scalability of the alignment algorithms.

(3) We demonstrate with extensive benchmarks across 4 datasets and hundreds of queries, that
SeeSaw consistently improves retrieval metrics; overall SeeSaw improves Average Precision
(AP) from .19 to .46 on a subset of more challenging queries.

(4) We demonstrate that alternative techniques to implementing relevance feedback can often
either reduce search accuracy with respect to the zero-shot CLIP approach, or scale poorly with
data, or both.

2 SYSTEM
SeeSaw1 consists of the following components: 1) a graphical user interface, 2) a pre-trained visual
semantic embedding model (CLIP [38]), 3) an indexed vector store for max inner product queries
(Annoy [5]), and 4) a server layer, which we will call the query aligner, mediating between the
other components and implementing the query alignment described above. Figure 3 shows how
data moves between these components.

2.1 CLIP
SeeSaw uses the CLIP [37] pre-trained visual-semantic embedding model for preprocessing and
during querying. SeeSaw embeds images into vectors using the visual component of CLIP during
preprocessing. During querying, SeeSaw uses the string embedding component of CLIP to translate
string inputs from the user into query vectors.

2.2 Vector Store
After raw image data is processed into vectors, and is indexed by the vector store, the vector store
provides a maximum inner product lookup interface with low latency, which is important because
1The source code this work is available at https://github.com/orm011/seesaw

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

https://github.com/orm011/seesaw

260:6 Oscar Moll et al.

CLIP Model § 2.2

Query Aligner
CLIP alignment § 4.1

Database alignment § 4.2

Raw Images Multiscale
Representation § 4.3

Vector Store § 2.3

Box feed-
back

aligned
query vector

User Interface § 2.1

Text query

Fig. 3. SeeSaw component diagram. Top: preprocessing steps; Bottom: dataflow during interaction loop.

the user waits on results from the system. The vector store needs to be accurate, but does not need
to be exact: it is acceptable for the result in line 4 of Listing 1 to be among the top largest rather
than exactly the largest, as even if the exact result were returned, there is already error inherent to
the embedding representation as shown in Figure 4
Our implementation uses the Annoy store[5], which offers only approximate maximum innner

product lookup, which is also what most vector stores offer. We saw only a minor drop in accuracy
metrics in our benchmarks using Annoy vs an exact but slow scan.

2.3 User Interface (UI) andQuerying
Figure 3, bottom left, shows a screenshot of the SeeSaw UI for the hot air balloon query as one of
the components of SeeSaw. A user wishing to make a model to detect hot-air balloons can begin
the search process with SeeSaw through text by typing “hot-air balloon” into the search box. The
loop of Listing 1 runs, and through the UI, the user provides feedback on the results offered so far
(line 5). This flow of data is diagrammed in Figure 3.

2.4 Preprocessing
Before using SeeSaw, we perform a one-time pre-processing pass over the image data. Pre-processing
in SeeSaw consists of converting raw image data into semantic feature vectors using a pre-trained
visual embedding (CLIP, in our case). For SeeSaw, the runtime of this preprocessing pipeline
depends on four variables: the number of images in the dataset, the pixel sizes of the images in the
dataset, the inference cost of the embedding, and the number and type of Graphics Processing Units
(GPUs) available. On COCO, a dataset of 120000 images, SeeSaw preprocessing in our un-optimized
single GPU pipeline takes less than an hour. Because this task is data parallel, the runtime can be
reduced to minutes by using more GPUs. Furthermore, model optimization techniques just as JIT
compilation would further reduce this runtime for real applications with larger datasets.

The vector store, Annoy, takes less than 20 minutes to build the index over the vectors computed
above. These costs are incurred once per dataset and are then amortized across all subsequent
queries.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

SeeSaw: Interactive Ad-hoc Search Over Image Databases 260:7

3 APPROACH
The key idea of our approach is to improve query alignment by leveraging user feedback and by
enriching that feedback with two other sources of information: the CLIP embedding of the query
itself (§4.1) as well as the structured of the unlabeled database (§4.2). SeeSaw incorporates these
different sources of information within a single loss function, which is minimized with respect to
an internal query vector parameter on every round to yield the next query vector SeeSaw will use
internally. A secondary aspect of our approach is using a multi-vector, multi-scale representation
of the data which we cover in §4.3.

3.1 Motivation forQuery Alignment
In the introduction we explained how both query alignment and concept locality are important
for searches to work well (diagrammed in Figure 2). SeeSaw focuses on query alignment, so it is
valuable to quantify the potential gains and the limitations of this approach. Because our evaluation
datasets have complete labels for different categories, which we will use as evaluation queries, we
can understand how far from the ideal any approach is. In this section, we show a large fraction of
labeled categories in the ObjectNet dataset presents a combination of high concept locality, and
a lot of the error is due to lower query alignment, and therefore adjusting alignment alone can
improve results substantially.

Ideal query vector. For a query such as “wheelchair” within ObjectNet, we can measure query
alignment deficit by comparing the accuracy of using the embedding of the string “a wheelchair”
to the accuracy of an ideal query vector to find wheelchairs within the database, one derived with
full knowledge of ObjectNet images and their ground-truth labels. We can compute an ideal query
vector by fitting a linear classifier model on the CLIP image embedding vectors 𝑋 , where each
embedding is labeled with 𝑦 = 1 or 0 depending on whether or not the image is labeled as having
a wheelchair in it. This linear model is certainly over-fit from a prediction perspective; but, in
this case, model fitting is a simple and efficient search method to find out whether there are any
high-accuracy query vectors.
Using the labels for “wheelchair” we can then compute the accuracy of results when using the

string-derived query vector or the ideal query vector. We will see shortly that there are queries
where even this best-fit vector has low accuracy: a strong indication of low concept locality;
and conversely, a common case is when the best-fit vector has high or perfect accuracy, but the
string-derived vector has low accuracy, a strong indication of high locality for the concept but low
alignment for the initial query, the kind of scenario where SeeSaw would work best.
After carrying out the above process for 300 different queries, we measure accuracy for each

query using Average Precision scores, and plot the AP of the ideal and initial queries for all 300
ObjectNet labeled categories as the y and x coordinates of scatter-points in Figure 4.

Average Precision (AP). AP is an accuracy metric common for information retrieval [31],
because it rewards earlier relevant results more heavily than simpler metrics such as precision or
F-score, and without picking an arbitrary result cutoff. AP values range from 0 to 1. An AP of 1
means perfect accuracy: when all positive results appear before the negative search results.

The figure shows the median AP for the ideal queries (see vertical boxplot) is above .9, and more
than 25% reach 1, while the median AP of initial queries (see horizontal boxplot) is around .2, which
shows that concept locality in the embedding is high because the ideal vectors perform much better
than the string derived query vectors. Note several best-fit queries score 1, indicating those queries
have very high locality and improving alignment is all that is needed. This is not always the case,

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

260:8 Oscar Moll et al.

but even queries with low 𝑦 coordinate values where locality may be a problem show benefits from
improving alignment (hence lie comfortably above the diagonal dashed line).

Note that these numbers do not mean we can easily find ideal vectors in practice, given the lack
of labeled data and the very few samples available from feedback to the system, but they show that
focusing on alignment makes sense for CLIP embeddings of this dataset.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Initial query vector AP

Id
e
a
l
q
u
e
r
y
 v

e
c
t
o
r
 A

P

Fig. 4. Comparing the Average Precision (AP) of the ideal query vector vs the initial CLIP string embedding
for each labeled class on the ObjectNet dataset. Each point in the scatter plot represents one of the 300
categories in ObjectNet. The median AP for the ideal queries (see vertical boxplot) is above .9, and more than
25% reach 1, while the median AP of initial queries (see horizontal boxplot) is around .2; showing that even
though concept locality in the embedding is high, the initial query alignment can be relatively poor. Section
§3.1 explains the setup in more detail.

3.2 Motivation for CLIP Alignment Approach
One natural way to implement query alignment in the context of a text search is to use a CLIP
string vector 𝑞0 to locate a few examples that we ask the user to label. This results in a set of
examples (𝑥,𝑦) which we can use to learn a new query vector as part of query_align in line 7 in
Listing 1. In the simplest approach, we can simply train a standard logistic regression model on the
user’s labels for results seen so far. After round 𝑡 of feedback from the user, we pick 𝑞𝑡+1 as follows:

𝑞𝑡+1 = argmin
𝑤

L1 (w)

L1 (w) =
𝑡∑︂
𝑖=1

LogLoss
(︁
𝑦𝑖 , sigmoid(w⊤x𝑖 + 𝑏)

)︁
+ _ |w|2 (1)

Few-shot CLIP. The summation term is the logistic loss function added over elements with
user feedback, the weight vector w is learned, as is the scalar bias 𝑏, typical in standard logistic
regression and necessary to achieve well-calibrated output probabilities. In practice we find fitting

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

SeeSaw: Interactive Ad-hoc Search Over Image Databases 260:9

both w and 𝑏 as opposed to forcing 𝑏 to be 0 substantially reduces the accuracy of the learned w as
a query, so we do not use the 𝑏 parameter.
The extra term, _ |w|2, where _ is a scalar hyperparameter, penalizes large magnitudes in the

weight vector and is again a standard penalty applied to the loss function of logistic regression
to prevent selecting values of w that are very large when the data are fully separable [33]. In the
interactive setting we work in, with very few labeled examples, it is essentially guaranteed that the
labeled data will be separable because the number of labeled data items is small compared to the
dimension (512) of the CLIP embedding, so this penalty is always necessary.
This approach based on Equation 1 is called the few-shot CLIP approach, as opposed to the

zero-shot CLIP approach of using 𝑞0 derived from a string with no feedback. Few-shot CLIP has
some advantages over zero-shot CLIP because the learned query vector 𝑞𝑡+1 is now based on actual
vectors from the database. Moreover, CLIP embeddings of images show high average few-shot
learning accuracy on many datasets: a handful of examples are often enough to train a linear model
with high accuracy [38]. However, we find the few-shot approach using Equation 1 in the way
we described is less accurate than the zero-shot CLIP approach, and the accuracy drop is evident
empirically on all our datasets, as we will explain and show later in Table 2. The few-shot approach
is a baseline in its own right, and we evaluate it together with other baselines in §5.4.

There are several reasons for the drop in accuracy of the few-shot CLIP approach from the
zero-shot CLIP approach: First, the absolute accuracy of zero-shot CLIP can be high, hence no
method can improve substantially on it. Second, 𝑞1 in the few-shot approach is computed from very
few vectors from the database, depending on the batch size, unlike the ideal vectors computed in
Figure 4 which beat the zero-shot CLIP vector but are trained on thousands of samples. In machine
learning algorithms small samples lead to larger generalization error. Third, the vectors 𝑋𝑡 , 𝑦𝑡 from
relevance feedback up until round 𝑡 are not necessarily representative either of the region of the
vector space that contains relevant results, nor of the full database, where the learned 𝑞𝑡+1 will be
used as a query.
We note that on some occasions, when the initial embedding query 𝑞0 is of sufficiently poor

quality, the few-shot CLIP approach does improve results beyond what the zero-shot approach
offers. However, even in that case, the approaches we introduce offer strong advantages over either
approach alone, as we show in our evaluation.

4 DETAILED APPROACH
SeeSaw leverages the previous high-level insights into multiple techniques which we explain
in detail in this section. First, we integrate the zero-shot and few-shot approaches into a single
combined approach. We call this approach CLIP alignment. Second, we guide our query vector
improvement process to also account for the structure of the unlabeled vectors in the database,
which we call Database alignment. Finally, we add a multiscale image representation, where we
extract multiple vectors for different patches of the image at preprocessing time to allow us to
capture objects that appear in different scales and positions in images.

4.1 CLIP Alignment
Consider a search scenario where we first find a single positive example 𝑥0 and then a single
negative example 𝑥1, in that order, using the CLIP string embedding as the initial query vector
𝑞0. There are many possible query vectors that produce the same observed ordering of 𝑥0, 𝑥1: for
example, clearly 𝑞0 produces this order, as does 𝑥0 used as a query itself, which is guaranteed to
score itself as the maximum possible score of 1. A third possible query vector is found by minimizing
a loss function such as logistic loss (similar to Equation 1) which would align somewhat with the

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

260:10 Oscar Moll et al.

positive example and away from the negative example. There are many more possible solutions
that produce this same observed ranking.
However, all these solutions will produce potentially different search results in the next round,

and these will have different qualities. How should we select the query vector? A typical approach
is cross-validation, where data is repeatedly separated into test and training sets to learn a model
that generalizes well on unseen data, but in this context with a handful of points, cross-validation
is not feasible.
Instead, we rely on a rule-of-thumb based on the principle of stability for machine learning

algorithms [43, p. 174]. The principle states that when choosing between two methods that both fit
the data equally well, the method more likely to generalize is the one that changes least when we
include or exclude a data point from the training set. Intuitively, a method that overly relies on any
one data point 𝑥 is also most susceptible to generalization errors due to sample variance. In our
setting, the original query vector 𝑞0 of zero-shot CLIP is not influenced by the observed data at all,
so there are reasons to prefer that vector as our next query by default.

CLIP alignment loss term. In reality, however, our initial query vector 𝑞0 will often fall short,
as we showed in the 𝑥-axis of Figure 4, for example. In many cases we must strike a balance
between being unduly influenced by sample noise and incorporating information from feedback.
This observation is the basis of CLIP alignment, which we implement by adding an extra penalty
term to the loss function in Equation 1:

L2 (w) = L1 (w) + _𝑐 (1. −w · 𝑞0/|w|) (2)
The term (w · 𝑞0)/|w| is the cosine distance between the parameter w and the initial query 𝑞0

(which is normalized), encouraging the optimal w to geometrically align with the original CLIP
text query 𝑞0, in addition to minimizing the previous loss.
In other words, if two possible query vectors 𝑤1 and 𝑤2 have the same classification loss, the

one with the highest cosine similarity to the original query 𝑞0 will be favored by this loss function.
_𝑐 is a new hyper-parameter that governs the trade-off between fitting the feedback data and

preserving the new weight’s similarity to the original. A large _𝑐 parameter means we ignore the
user labels and a small one means we ignore the initial text query.
As more user examples come in, the user input is weighted more highly with respect to the

CLIP prior. We show in the evaluation section that the resulting query vectors from adding this
additional loss term are more accurate than either the original 𝑞0 (the zero-shot approach) or one
learned purely from the data (the few-shot approach), as in Equation 1, and this is the case even
when 𝑞0 has a poor initial performance.

4.2 Database (DB) Alignment
From a supervised learning point of view, a query minimizing Equation 2 on a large sample is also
likely to show a low error over the full database. However, in SeeSaw we minimize Equation 2 over
a small sample 𝑥𝑡 of examples previously shown to the user, for which we got feedback 𝑦𝑡 . Besides
their small size, these samples are not a random sample of the database 𝑋𝐷 because they were
elements with high similarity to previous query vectors 𝑞𝑡 , 𝑞𝑡−1..., 𝑞0. This is an instance of a domain
shift problem, where the target domain distribution 𝑋𝐷 differs from the training set distribution
𝑋𝑡 , 𝑦𝑡 , even if the mapping 𝑋 → 𝑦 being learned is the same [26].

SeeSaw uses this observation as a starting point to further improve query alignment with the
real database. At a high level, our key observation is that we can approximate an unbiased and
large sample of the data 𝑋𝐷 , 𝑦𝐷 using the label propagation algorithm defined in [54], which we

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

SeeSaw: Interactive Ad-hoc Search Over Image Databases 260:11

will explain below, and then use this new training set consisting of 𝑋𝐷 and �̂�𝐷 when solving for w
in Equation 2.
Note that while the “propagated” labels �̂�𝐷 are only an estimate of the unobserved labels, the

distribution of 𝑋𝐷 faithfully reflects the distribution of the database vectors.
We found the propagation step improves the final classifier, but that the propagation algorithm

can reduce interactivity, as it must run after every round of feedback to propagate the new labels
and requires iterating over a full k-Nearest Neighbor graph (kNN graph) of the vectors in the
database.

DB alignment loss term. Hence, the version of database alignment we use in SeeSaw takes
the propagation approach only as a conceptual starting point but achieves the effect by adding a
second alignment term to the loss function Equation 2, producing Equation 3.
In this updated loss function, the matrix𝑀𝐷 in the expression w𝑇𝑀𝐷w, which we will explain

in detail shortly, depends on the vectors in the database 𝑋𝐷 , and on their kNN graph, but not on
the query 𝑞0, so it can be computed once per dataset ahead of time.𝑀𝐷 ’s size is 512 × 512, and is
constant with respect to the size of the database: its size is only a function of the CLIP embedding
dimension of 512, not of dataset size.

L3 (w) = L2 (w) + _𝐷 (w𝑇𝑀𝐷w)/|w|2 (3)
In the remainder of this section, we explain how this regularization term relates to the original

high-level idea of learning w from a larger sample and how𝑀𝐷 is computed. We do not know the
labels, 𝑦𝐷 , but we do know the true distribution of the vectors 𝑋𝐷 , and thanks to user feedback
we have a small set 𝑋𝑡 , 𝑦𝑡 of true labels. Label propagation [54, 55] is a semi-supervised learning
algorithm that takes the above as inputs and generates a soft (non-binary) approximation �̂�𝐷 of 𝑦𝐷
given 𝑋𝐷 and 𝑦𝑡 .

The high-level assumption of the propagation algorithm is that similar points in 𝑋𝐷 should have
similar values of 𝑦𝐷 . Implicitly, this leads to high-density clusters in 𝑋𝐷 having homogeneous
values.

Operationally, label propagation requires using a 𝑘-nearest neighbor graph of elements in 𝑋𝐷 ,
which we compute using an implementation of NN-descent[12], an approximate but scalable way
to compute a kNN graph over large datasets. We can represent this kNN graph by its adjacency
matrix𝑊 .𝑤𝑖 𝑗 in the adjacency matrix is a similarity score 𝑥𝑖 and item 𝑥 𝑗 in the database. Following
[54] we use𝑤𝑖 𝑗 = exp (−(𝑋𝑖 − 𝑋 𝑗)2/2𝜎2) as our similarity metric i.e., we let the similarity metric
decay exponentially with the distance between embedding vectors decreases. 𝜎 is a scalar hyper-
parameter controlling how fast the similarity metric drops. The propagation algorithm in [54]
minimizes the total differences between neighboring vertices in the kNN graph:

∑︁
𝑖, 𝑗 𝑤𝑖 𝑗 (𝑦𝑖 − 𝑦 𝑗)2.

As explained in [54], this sum can be stated concisely as:

𝑦𝑇 (𝐷 −𝑊)𝑦 (4)
where𝑊 is the adjacency matrix, and 𝐷 is a closely related “degree” matrix, a diagonal matrix

where each diagonal entry is the sum of the corresponding row in𝑊 , both matrices are derived
from computing a kNN graph for the vectors in 𝑋𝐷 . Both 𝐷 and𝑊 are square matrices of size
𝑁 ×𝑁 where 𝑁 is the size of the database 𝑋𝐷 . In practice,𝑊 is large but sparse because it only has
𝑘 non-zero entries per row, one for each of the 𝑘 neighbors

DB alignment approximation. We can obtain Equation 3 by observing the final w will be fitted
to these synthetic labels �̂�𝐷 using logistic regression, which fits a sigmoid to the data. Because we
empirically observe linear models fit CLIP embeddings well (Figure 4), i.e., concepts are clustered,
then it is reasonable to assume sigmoid(𝑋𝐷w) ∼ 𝑦𝐷 in practice, and therefore, we can replace 𝑦 in

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

260:12 Oscar Moll et al.

Equation 4 with𝑦 (w) ≔ sigmoid(𝑋𝐷w), to obtain𝑦𝑇 (w) (𝐷−𝑊)𝑦 (w). Instead of one minimization
to find �̂� and a separate one to find w, we can now add a term 𝑦𝑇 (w) (𝐷 −𝑊)𝑦 (w) to Equation 2
and perform a single minimization with respect to w. The expression 𝐷 −𝑊 is an 𝑁 × 𝑁 sparse
matrix, where at most 𝑘 × 𝑁 entries are non-zero, and where 𝑁 is the size of the database. 𝑋𝐷 is of
size 𝑁 × 512, where 512 comes from CLIP, and the vector 𝑦𝐷 is of size 𝑁 . It is easy to see that this
unified approach can be slow because it scales with 𝑁 , the size of the dataset.
However, we can bypass this blow-up problem if we replace sigmoid(𝑋𝐷w) with 𝑋𝐷w/|w|,

yielding w𝑇𝑋𝑇
𝐷
(𝐷 −𝑊)𝑋𝐷w/|w|2.

w𝑇𝑋𝑇
𝐷
(𝐷 −𝑊)𝑋𝐷w/|w|2 can be interpreted on its own right as penalizing drastic variation of

the cosine score in highly dense regions of the graph. Normalizing w is meant to avoid w being
pulled to 0 in order to make the expression 0. Because the derivative of the cosine similarity between
vectors is minimized when the value of the cosine is 1, this term points w toward the center of
a dense region instead of its periphery when either direction explains the few labeled samples
equally well.
We define𝑀𝐷 = 𝑋𝑇

𝐷
(𝐷 −𝑊)𝑋𝐷 , grouping the matrix in the middle of the expression.𝑀𝐷 can

be computed during dataset pre-processing by building a kNN graph, which gives us both w and
𝐷 , as we do for propagation, and then computing the product 𝑋𝑇

𝐷
(𝐷 −𝑊)𝑋𝐷 . This product is

computed only once at preprocessing. If this preprocessing cost becomes prohibitive, we found
that using a sample of a few thousand vectors from 𝑋𝐷 , instead of the full 𝑋𝐷 database, produces a
very similar𝑀𝐷 (note that we did not enable this optimization in our experiments).

We note that it makes sense to ask: if we had access to these propagated labels �̂�𝐷 , we could also
use these propagated labels directly as a score, instead of now fitting a linear w. However, fitting
a w as we do above is not only a runtime optimization, it also increases accuracy. The �̂�𝐷 do not
work as well in practice as the fitted w. As we saw in Figure 4, a linear model is a good description
for many queries, reflected in the low error for the best-fit linear models, which suggests restricting
the model to be linear may work in our favor.

4.3 Multiscale Representation
In this section we describe the multi-scale representation. In the evaluation, we show this basic
technique can greatly help zero-shot CLIP searches on their own, as well as when combined with
CLIP and DB alignment. Multi-scale representation maps images to multiple vectors, increasing
the size of the vector database. While this is not an issue for the vector database we use, it can
be an issue for techniques that scale poorly with the size of the database. Because CLIP and DB
alignment scale with the size of the data seen by the user, it is possible to combine them while
keeping latency interactive.
The CLIP image embedding model is trained on images of 224 × 224 pixels. However, in real-

world datasets, and also those from the COCO, LVIS and BDD datasets in our evaluation, the raw
images are typically larger, in the 800 × 1000 range. The simplest option to use CLIP with these
datasets is to rescale images to fit within this window, which we will call a coarse embedding.
CLIP itself was trained this way. This coarse embedding approach is how CLIP is most commonly
used. When analyzing the types of queries where SeeSaw performs poorly, however, we found this
coarse approach misses many objects depending on the object size within the image. For example,
wheelchairs and animals often occupy just a few tens of pixels in dash-cam images from the BDD
dataset.

Multi-scale patches. An alternative to the coarse embedding approach is to treat images as a
tiling of image patches at multiple size scales. Each patch is then encoded separately using CLIP,
yielding multiple vectors per image. In our experiments with this multi-scale representation, we

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

SeeSaw: Interactive Ad-hoc Search Over Image Databases 260:13

used the simplest possible combination of scales: a large-scale patch covering the full image, i.e., the
coarse embedding, plus a finer-grained tiling of 1/2 the size of the image, as long as the resulting
patch was larger than 224 pixels. For example, an image of size 448 × 448 maps to one coarse tile of
size 448× 448, plus 9 finer-grained tiles of size 224× 224, corresponding to a patch of size 224× 224
striding the image with a stride length of 224/2, i.e., a 10x increase in vectors per image. A smaller
image would only map to one vector. A larger square image would still only include 9 vectors,
though a wider image may add more along that dimension.
At query time, an image’s score is computed as the maximum score of any of its patches. This

choice means SeeSaw uses the vector store to find high-scoring patches, rather than high-scoring
images, helping SeeSaw return results where only a part of the image is relevant to the final result,
and its individual benefit is shown in the evaluation.
To integrate the multi-scale representation with the user’s box annotations, the region boxes

corresponding to patches on the image that we have indexed ahead of time are compared to the box
patches drawn as feedback by the user. Boxes that overlap with the user feedback are considered
positives, and boxes with no overlap are considered negatives for the purposes of creating a training
set 𝑋𝑡 , 𝑦𝑡 for the next round.

4.4 Solving for w

q𝑡+1 = argmin
w
L(w, x𝑡𝑖=1, 𝑦𝑡𝑖=1) (5)

L(w, x𝑡𝑖=1, 𝑦𝑡𝑖=1) ≔∑︁𝑡
𝑖=1 LogLoss (𝑦𝑖 , sigmoid(w⊤x𝑖 + 𝑏)) fit user feedback

+_ |w|2 but avoid |w| → ∞

+_text
(︃
1 − w⊤qtext
|w| |qtext |

)︃
prefer w aligned with qtext

+_DB
(︃
w
|w|
⊤
MD

w
|w|

)︃
prefer w aligned with DB

Table 1. Loss function

The full loss function is written down in Equation 5 and Table 1
WeminimizeL using the PyTorch [35] implementation of the L-BFGS [30] optimization algorithm

to solve for w, then we use the solution vector as the next query 𝑞𝑡+1 into the vector database.
L-BFGS finds the optimal solution in a few tens of steps (taking a few milliseconds) by using

second-order derivative information in addition to gradients. We use it for SeeSaw because it
converges quickly and also removes the need for learning rate tuning (and also the possibility of
divergence or no convergence). Note in particular that the loss function computations grow with
the amount of feedback the user provides, not with the size of the database.

5 EVALUATION
The main goals of this evaluation are:
(1) To compare SeeSaw to zero-shot CLIP, which uses clip alone and no feedback, few-shot CLIP,

which uses user feedback to train a logistic regression model, and a state-of-the-art active
learning search baseline which also leverages user feedback: Efficient Non-myopic Search (ENS)
[23]. We find SeeSaw is able to show consistent improvement in Average Precision (AP) across

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

260:14 Oscar Moll et al.

four datasets and thousands of search queries, in contrast to few-shot CLIP and ENS, which
show consistent drops in AP with respect to zero-shot CLIP (§5.1). We discuss how the ENS
accuracy drop is partly due to a stronger reliance on ranking scores being well calibrated as
probabilities in §5.4, something CLIP does not provide.

(2) To showhow the different SeeSaw components: CLIP alignment, query alignment, andmultiscale
representation interact and contribute to the overall SeeSaw results in (§5.3).

(3) To show SeeSaw translates these algorithmic insights to time savings for users (§5.5).

5.1 Accuracy Benchmark
The ideal benchmark datasets and queries for automated testing of a system like SeeSaw would
be varied large-scale image datasets from different domains. The images would not be from the
open web, as CLIP and similar models are likely to have been trained on them. The datasets would
include labels for thousands of queries of different complexity. Results for these queries within
the datasets should be both rare in an absolute sense and, more importantly, hard to find with
zero-shot CLIP alone. A smaller subset of hundreds of queries where zero-shot CLIP performs very
well would be included to flag regressions caused by different proposed methods. The annotations
for each query would include the relevant region within the image in order to let region-based
feedback algorithms approximate human input for each image.

Because such a benchmark does not exist and creating it would be extremely costly and laborious,
we opt instead to adapt several object detection and classification datasets: LVIS[19], ObjectNet[3],
BDD[51], and COCO[28]. These labeled object detection datasets allow us to use their object
annotations for testing region feedback, as well as for evaluating results.

Benchmark task. For a given category and dataset, our benchmark task consists of finding 10
examples of the category, starting with the category name string as the initial text query. We stop at
60 images if 10 examples have not been found by then. 60 images correspond to bounding searches
to less than 5 minutes based on our measurements that show users may take up to 5 seconds per
image (Table 5), a quantity that will depend on the dataset and amount of box feedback provided.
Though the exact cutoff choices of 10 and 60 are not critical for the results we report, having some
kind of cutoff at low values ensures the reported metrics do not reflect improvements attainable
only after receiving a large number amount of feedback or improvements which are only visible
deep into the list of results.

Average Precision (AP). We measure result quality through AP. As discussed earlier, AP for
a single query is the average of the individual precision scores computed at every possible recall
threshold: 𝐴𝑃 = (∑︁𝑅

𝑖=1 𝑃𝑖)/𝑅, where 𝑅 is the number of relevant results in the data and 𝑃𝑖 is the
precision if we cut results off after the 𝑖𝑡ℎ relevant result in the data. Because we consider up to 10
relevant results, only ten precision scores will be included in the average. For queries with R < 10
we use R instead. When less than the target number of results are found, the remaining precision
scores are set to 0. AP ranges 0 to 1, with 0 meaning no results were found within 60 images, and 1
meaning the first ten images were all positive. In addition to stopping the benchmark at 60 images,
within those 60 images AP favors earlier results rather than later ones.

Zero-shot CLIP results. The benchmark task simulates a scenario where a user starts a search
query via text and then interacts with it via region box feedback. For a given dataset category such
as wheelchair, we use the text string “a wheelchair” to start the search. After receiving the first
image result, the benchmark code uses the dataset ground truth to determine when the image
is relevant, and then provides box labels from the dataset as region based feedback around the

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

SeeSaw: Interactive Ad-hoc Search Over Image Databases 260:15

relevant image area. For zero-shot CLIP this feedback is ignored, and we obtain the results shown
in Figure 1.

Note the long left-tails in the figure. ObjectNet and LVIS, in particular, help broaden this evalua-
tion thanks to their large number of categories (respectively 300 and 1400), and a corresponding
large number of queries on the left tails. COCO and LVIS, like many other standard benchmarks
in object detection, share the same underlying set of images taken from the open web (Flickr),
which suggests CLIP is likely to have seen the images during training. LVIS includes annotations
for many objects besides the main subject of their images, in contrast to COCO, which is reflected
in COCO having almost no density at lower accuracies. BDD consists of a small number of classes
from driving scenes, and shows a similar problem of low density because most of the classes (car,
person, etc.) are ones CLIP was likely trained extensively on.
These observations suggest even datasets with high mean AP on standard labels in practice

have hidden long-tails when it comes to ad-hoc queries. Because average metrics over queries in a
dataset are dominated by the high-density regions where CLIP performs well, but we are interested
in “long tail" queries in SeeSaw, we use a cutoff line at𝐴𝑃 < .5 to define a hard subset of the queries,
marked in the plot by the dashed line. The labels on the dashed line indicate the fraction and total
number of classes in the dataset that are below this threshold.
COCO and BDD are designed to test object detection search, hence many labeled classes are

not rare in absolute terms, which makes their left tails much less informative. However they are
larger datasets both in image size and number of images, so they help test the latency of different
algorithms.

ObjectNet only includes images of size of size 224 × 224, the same size used to train CLIP, with
intentionally centered objects. This dataset feature could push baseline CLIP to perform better than
it would otherwise, but ObjectNet still challenges CLIP for a several tens of queries.

5.2 SeeSaw Benefits
In later sections we show zero-shot CLIP performs better on average than the other baselines we
evaluate. Hence, in this section we show that SeeSaw beats zero-shot CLIP, especially on classes that
CLIP struggles with, by running SeeSaw on the benchmark task defined previously and quantifying
the distribution of the change in AP (ΔAP), rather than only the average change.
The hyperparameters of SeeSaw for this experiment are 𝑘 = 10 for the kNN graph, 𝜎 = .05 for

the distance kernel used between vertices in the graph, _ = 100 for the norm regularization, _𝑐 = 10
for clip-alignment regularization, and _𝐷 = 1000 for database-alignment regularization. We chose
these parameters based on average performance on the queries. We note the same hyperparameters
were used for all queries and datasets, and the different datasets seem to peak at the same parameter
values. Varying these _ one order of magnitude decreased the absolute accuracy slightly, but
SeeSaw remains substantially more effective than the baseline. Varying 𝑘 from 5 to 20 also did not
substantially affect results.

Figure 5 shows ΔAP broken down by dataset (left column). Note that zero-shot CLIP reaches AP
of 1 (see Figure 1) for several object classes, which guarantees ΔAP ≤ 0 for those queries, reflected
by the vertical jump at ΔAP = 0 in the CDF. In order to highlight the change on the tail queries, we
show the distribution of ΔAP restricted to the hard subset of queries on the right column. A lower
starting AP allows ΔAP to be generally larger.
Here, the gray shaded area marks the [.1, .9] quantile interval. The red-shaded region (AP<0)

shows queries where SeeSaw did not improve performance. In general, SeeSaw is quite robust,
with more than 90% of the queries improving or staying the same (we a breakdown of average AP
results on these datasets in the next section). The solid bars plot the min, median and max ΔAP. In
many cases the min is very close to 0. The main reason for a few outliers on the left seems to be

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

260:16 Oscar Moll et al.

the multiscale representation, which in most cases is beneficial, but can sometimes push the first
result of a query a few spots down the rank. This can affect AP strongly if the original AP was 1.
Methods to reap the benefits of multiscale while limiting any downside are an interesting line of
future work.

all queries hard subset

LV
IS

O
bjN

et
C

O
C

O
B

D
D

−0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0
change in AP (bigger is better)

fr
ac

tio
n

of
 q

ue
rie

s
(0

 to
 1

)

Fig. 5. CDF of change in AP of SeeSaw on top of zero-shot CLIP, broken down by dataset. The red shade
marks the region with ΔAP < 0. The darker gray shaded area marks the [.1, .9] quantile interval of observed
Δ𝐴𝑃 so that the robustness of the improvement is evident. The solid vertical lines mark the minimum, median
and maximum change observed for completeness. The average values are shown in Table 2

5.3 SeeSaw Breakdown
In this section we breakdown the contributions from the different SeeSaw components to the
overall accuracy in the benchmark presented before.

Table 2 shows how much each of these optimizations contributes to the total Average Precision
(AP) in SeeSaw by adding optimizations one at a time and recording the aggregate changes in AP.
It shows increases in mean AP for each optimization (rows), on each dataset (columns). The row
states the mean AP when using CLIP embeddings out of the box. Each later row adds one of the
optimizations in SeeSaw. The rightmost column “avg” is the average of the values to the left. It
shows all optimizations contribute to the final results on average. The rest of the columns show
the mean AP for each dataset, and each shows different benefits from different optimizations in
SeeSaw. Each row represents the addition of a different optimization described in the indicated
section of the paper. Zero-shot CLIP is CLIP without any user input; few-shot CLIP is CLIP (with
multiscale, in this case) plus logistic loss from user feedback (Equation 1), which is also a baseline
approach to relevance feedback on its own right.

The exact mean Average Precision (mAP) values mostly reflect the high initial mAP of zero-shot
CLIP for many queries, as explained in Figure 1, here focus more on the relative sizes of the changes,
which may transfer better to ad-hoc scenarios. Every row of optimization consistently increases
mAP with the exception of few-shot CLIP, which causes a drop on most columns. We referenced
this phenomenon in the introduction, as few-shot CLIP is a reasonable, baseline for relevance
feedback. We note few-shot CLIP when combined with alignment methods undo this regression.
The bottom row is equivalent to total SeeSaw mAP.

Few-shot CLIP does improve the mean AP for the hard subset of queries in LVIS, something we
observe consistently on the hard subset of queries when multiscale is off (not shown in this table).
Because zero-shot CLIP is very accurate, the weakness of the few-shot approach is more apparent

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

SeeSaw: Interactive Ad-hoc Search Over Image Databases 260:17

on the top half of the plot and motivates CLIP alignment, which turns out to also offer strong
benefits in hard queries where few-shot CLIP improves results, as in LVIS. When the zero-shot
CLIP vector performs the worst at finding initial results we may be the most tempted to ignore
that vector weight and prefer the data, but this would be a mistake in the setting of small samples
because the generalization error of the learned vector is likely dominated by variance error, whereas
the zero-shot CLIP vector error consists of bias error.

Finally, we highlight the importance of algorithms that can scale to handle the growth in vectors
that multiscale brings, as this brings has strong benefits for the search. In Table 2 these rank second
only to CLIP align, especially on BDD which has the largest images, but also on LVIS, which
includes many objects on different image locations. ObjectNet does not benefit from multiscale, as
it consists of standard fixed size images. Additionally, multiscale interacts with CLIP align in more
complex ways than just latency: CLIP align and DB align are less effective in absolute terms when
multiscale is not enabled. The data on Table 3, which we will explain fully later, includes a row for
SeeSaw without multiscale enabled. Especially on BDD, the 3 hard queries improve from .02 to .07
without multiscale, but from .10 to .24 with it.

LVIS ObjNet COCO BDD avg.

al
lq

ue
rie

s zero-shot CLIP 0.63 0.64 0.90 0.74 0.72
+multiscale (§4.3) 0.70 0.64 0.95 0.76 0.76
+few-shot CLIP 0.67 0.59 0.87 0.68 0.70
+Query align (§4.1) 0.75 0.69 0.96 0.77 0.79
+DB align (§4.2) 0.76 0.70 0.96 0.79 0.80

ha
rd

su
bs
et zero-shot CLIP 0.19 0.28 0.27 0.02 0.19

+multiscale 0.32 0.28 0.58 0.10 0.32
+few-shot CLIP 0.34 0.28 0.57 0.07 0.31
+Query align 0.42 0.39 0.74 0.20 0.44
+DB align 0.44 0.40 0.75 0.24 0.46

Table 2. Increases in mean Average Precision (mAP) for each optimization (rows), on each dataset (columns).
The top panel shows the averages over all queries, while the bottom panel is restricted to the hard subset of
queries for each dataset. All techniques contribute to the final result, their relative contribution depends on
properties of the data.

5.4 Comparison with Baselines
We compare SeeSaw to the following baselines: ENS from the recent active learning literature and
Rocchio’s algorithm,[40], a classic relevance feedback algorithm.

Rocchio’s algorithm[31, 40]. Rocchio’s algorithm creates a new query vector at every iteration,
𝑞𝑡 , by taking the initial query vector used, 𝑞0 and adding the average of the set of relevant example
vectors returned so far (𝐷𝑟) (with a weight of 𝛽 , and subtracting the average of the nonrelevant
example vectors seen so far(𝐷𝑛) (with a weight of 𝛾). The formula we use is Equation 6:

q𝑛 = 𝛼q0 +
𝛽

|𝐷𝑟 |
∑︂

𝑑 𝑗 ∈𝐷𝑟

dj −
𝛾

|𝐷𝑛 |
∑︂

𝑑 𝑗 ∈𝐷𝑛

dj (6)

Like SeeSaw, Rocchio’s algorithm includes hyperparameters that weight the three terms. For the
experiments below, we use the hyperparameters that maximized the average AP across all datasets:
𝛽 = .5 and 𝛾 = .25. Additionally, following [31], we tested 𝛾 = 0, but AP was higher with our choice
of 𝛾 = .25. 𝛼 was set to 1 as any other value would be equivalent after rescaling.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

260:18 Oscar Moll et al.

Efficient Non-myopic Active Search (ENS) [23]. ENS is a state-of-the-art baseline from the
active learning literature. Unlike much active learning work that aims to optimize the accuracy of
a model by judiciously choosing data points to label, ENS is an active search algorithm whose goal
is to maximize the number of results found for a fixed amount of human input, which is similar to
the setting of SeeSaw. ENS has been shown to be more efficient than previous work in the area
such as [16].
While both SeeSaw and zero-shot CLIP select the next result greedily on every iteration, ENS

takes a long view: it picks the next result based on its estimate of how this choice affects the total
number of results found after 𝑡 steps in the future (in the benchmark case, 𝑡 = 60). For example,
ENS may pick the second-highest scoring image now if it lies within a dense cluster of similarly
scored points. In that scenario, if the image turns out to be relevant then ENS can estimate it is
more likely to find many more results in succession. This choice could be wiser than picking the
highest scoring vertex in the kNN graph if this result is isolated. Zero-shot CLIP would not consider
this scenario. SeeSaw would pick the highest scoring vector just like zero-shot CLIP, though DB
alignment will affect the scores of isolated points.
We implemented the ENS algorithm in SeeSaw. ENS makes use of a kNN graph, the same one

we used for DB alignment. For its hyper-parameters we used 𝑘 = 20 since that improved ENS
results, and we used the same 𝜎 = .05 as for SeeSaw. We changed our version of ENS to integrate
CLIP into it: we use CLIP scores as an individual 𝛾𝑖 for each vertex so ENS also has access to CLIP
as a prior. The 𝛾 parameter acts as a prior score in ENS, providing a score for vertices without
labeled neighbors. The original ENS uses a global 𝛾 = .1 hyperparameter. Additionally, we wait
for zero-shot CLIP to find a first positive result from the data before starting ENS. Both of our
modifications help ENS perform better in the benchmark. For simplicity, for this benchmark we set
the time horizon 𝑡 = 60 initially, and reduce it after every step so ENS can make optimal decisions
given the time remaining.

Baseline results. We ran the benchmarks described in §5.1, including zero-shot CLIP, SeeSaw,
and show the mAP results in Table 3. In the table, each row corresponds to one of these methods
and each column to a different dataset. The rightmost column is the average of those to the left
and shows that SeeSaw increases mAP further. As we do in Table 2, we show averages over both
the hard subset and all queries. The hard subset numbers tend to spread out wider, which is more
helpful to display differences, We note SeeSaw AP is highest for all datasets in this long tail of hard
queries. Rocchio comes in second, and is slightly better than SeeSaw for COCO when aggregating
across all queries. This behavior is consistent with Rocchio also using a form of CLIP alignment
through the 𝑞0 term. We note that few-shot CLIP generally lags behind Rocchio in AP, and for some
datasets is also worse than zero-shot CLIP, showing the importance of regularizing by the initial
query, done implicitly in Rocchio and explicitly in SeeSaw. Table 3 also shows ENS can decreases AP
with respect to zero-shot CLIP. Note that because we only implemented ENS for coarse embedding,
without multiscale, in Table 2 we compare all baselines without multiscale enabled. SeeSaw with
multiscale enabled was evaluated in §5.3.

ENS analysis. One reason for the drop in ENS is that the ENS logic to estimate the expected
reward is sensitive to score calibration. Calibrated scores need to be correct not only in the ranking
they produce but also correct when interpreted as probabilities: for example, 10% of points with
a calibrated score of .1 should be positive. Calibration is a strong assumption; we note that CLIP
scores are not calibrated.

ENS depends on score calibration because it uses the probabilities as weights to compute expected
values. The longer the reward-horizon hyper-parameter 𝑡 , the more terms this sum has and the
more susceptible the score is to calibration errors. We test this hypothesis by calibrating CLIP

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

SeeSaw: Interactive Ad-hoc Search Over Image Databases 260:19

LVIS ObjNet COCO BDD Avg.

al
l

qu
er
ie
s zero-shot CLIP 0.63 0.64 0.90 0.74 0.72

few-shot CLIP 0.65 0.58 0.88 0.73 0.71
ENS[23] 0.50 0.43 0.86 0.70 0.62
Rocchio[40] 0.68 0.70 0.93 0.75 0.76
this work 0.69 0.70 0.92 0.76 0.77

ha
rd

su
b-

se
t

zero-shot CLIP 0.19 0.28 0.27 0.02 0.19
few-shot CLIP 0.25 0.28 0.32 0.06 0.23
ENS 0.16 0.24 0.37 0.03 0.20
Rocchio 0.28 0.38 0.49 0.05 0.30
this work 0.30 0.40 0.55 0.07 0.33

Table 3. Table comparing mean Average Precision (mAP) of SeeSaw different baseline algorithms. No method
used multiscale in this table.

reward horizon 𝑡 = 1 2 10 60

raw 𝛾𝑖 0.63 0.62 0.61 0.55
calibrated 𝛾𝑖 0.65 0.65 0.65 0.63

Table 4. Mean AP scores for ENS averaged over the four datasets, showing the effect of varying the time
horizon hyperparameter (columns), and the effect of calibrating the initial 𝛾𝑖 scores into probabilities (second
row). The results of the calibrated row are not attainable in practice because calibration requires labeled data.

scores 𝑠𝑖 for each vector into probabilities via Platt scaling [34, 36]. We emphasize this calibration
is not possible in a real deployment because it requires labeled data ahead of time. Then we run
ENS using this carefully tuned 𝛾𝑖 , and show the average of mAP over all the datasets for of ENS
without 𝛾𝑖 calibration on the top row of Table 4, and those with calibrated 𝛾𝑖 in the second row.

The table shows ENS performs better if the initial 𝛾𝑖 are calibrated using Platt scaling, with access
to the ground truth data, showing ENS is sensitive to calibration. Furthermore, mAP degrades
sharply as we increase the reward horizon parameter used internally by ENS to compute expected
values, whereas it degrades less sharply in the bottom row, showing that larger reward horizons
are more sensitive to poor calibration. In contrast, greedy methods such as zero-shot CLIP do not
depend on the calibration of the scores. SeeSaw, in particular, optimizes dot product alignment in
Equation 3 rather than probability estimates.

A second reason for the mAP drop in ENS is that the kNN classifiers used internally for ENS are
less efficient at learning from small samples than the linear models used by SeeSaw, as long as a
linear model is a good reflection of the data, which is true for CLIP embeddings. This is reflected in
Table 4 on the column for time horizon 𝑡 = 1, an extreme setting where ENS effectively becomes a
greedy kNN-model.

5.5 End-to-End Tests
The primary goal of this section is to test SeeSaw with real people in different scenarios to how
different variables affect the overall time it takes to complete a task with SeeSaw or otherwise. The
overall time includes not just the time savings due to increased accuracy but also the time costs
due to user feedback latency as well as any possible system latencies. A secondary goal is to show
estimates of how much time it takes a user to provide feedback to SeeSaw, and how this time varies
with the type of annotation.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

260:20 Oscar Moll et al.

The effect of annotation time overhead from using SeeSaw is ameliorated by two factors: the
first is that users only annotate positive examples, and in hard searches that require inspecting
many images, positive examples are rare. Conversely, when positive examples are common, SeeSaw
overhead due to labeling is larger, but the searches themselves complete much more quickly.
The baseline for this evaluation is the same user interface and back-end of SeeSaw, but with

all the optimizations of §4 disabled, which means zero-shot CLIP with a User Interface (UI) for
searching.

In this baseline system, SeeSaw provides users with a keyboard binding to mark the whole image
as relevant. This input is necessary to ensure that users know when they completed the task (the
system shows a total count), but is not used as feedback. We recruited 20 graduate students and 20
Amazon MTurk workers for these tasks. Both groups were assigned the same mix of tasks on both
systems.

Like our task in §5.1, we ask users to find 10 examples of the given concepts and we stop each task
after 6 minutes. Note the evaluation in §5.1 involved no real users – instead we use dataset ground
truth to provide feedback and we stop the query after finding 10 examples or going through 60
images. Instead of measuring AP, in this evaluation we measure the time it takes users to complete
the task (find 10 examples).
Because human time is a very limited resource, in this section we evaluate SeeSaw and the

baseline on 7 queries. Unlike in §5.1, our goal in this experiment is not to be comprehensive, but
to observe how searches play out in different scenarios. Guidance on how to use, including how
to provide feedback and the keyboard bindings of the UI was provided through a tutorial screen
followed by two initial queries used for training users on each version of the system, and whose
results were discarded. Each user then completed seven tasks using both interfaces. The subset
of queries each user completed on each interface did not overlap, as in early tests we found the
time it takes to provide feedback or skip an image can be artificially low the second time the same
image is seen for the same query.

We show aggregate results for these experiments in Figure 6, where the 𝑥 axis measures the time
elapsed and ends at 6 minutes (360 seconds). The 7 queries we tested are logically grouped into
two sets: one set of “hard” queries and one of “easy” queries, which in this context simply means
queries where the zero-shot CLIP has a low or high AP accuracy. The main goal of this section is to
show how this affects time.

We show the results for the baseline and SeeSaw side by side distinguished by color and dashes.
The middle triangle corresponds to the median time taken by users. The error bars on the plot
correspond to a bootstrapped 95%-CI of the time required, capturing inter-user variability for a
given query.

For the hard queries, the median time for the baseline is 360 seconds, ie. half or more of the users
could not complete the task within that time limit, a qualitative difference with SeeSaw.

For “wheelchair” and “car with open door” none of the baseline users were able to complete the
task, so the corresponding error bars collapsed into the 360 mark. The most challenging query, “car
with open door,” was completed only by a few people, all using SeeSaw, though most people, even
most of those using SeeSaw, were not able to complete it. The times required to find wheelchairs
and dogs show SeeSaw helped substantially shorten times in these cases, even after accounting for
inter-user variability.
For easy queries, the figure shows that SeeSaw can be slower than the baseline; this difference

boils down to the annotation overhead per frame. Table 5 shows when images are marked as
relevant the overhead for selecting the region bounding box adds about a 50% latency (4.5 vs. 3
seconds per image). For these queries, SeeSaw adds the worst possible relative overhead but the
absolute latency values are low for both methods.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

SeeSaw: Interactive Ad-hoc Search Over Image Databases 260:21

hard
easy

0 60 120 180 240 300 360

dog

wheelchair

melon

car with open door

egg carton

dustpan

spoon

time (seconds) − less is better

CLIP only this work

Fig. 6. Comparing time elapsed before users find 10 examples of each of the categories, or 6 minutes pass
(rightmost on 𝑥). A value of 360 seconds corresponds to not complete the task. The median time for each
method is represented by a triangle. The error bars mark the 95𝑡ℎ percentile CI for the mean time, to show
variation between users.

baseline seesaw

not marked 1.98 ± .10 2.40 ± .19
marked relevant 3.00 ± .28 4.40 ± .45

Table 5. User annotation time (s) per image depends on whether the image is marked relevant. (2s vs 3s).
Localized feedback adds an overhead of about 1.5 seconds per image (4.5s) The ± denotes the 95% CI.

5.6 System Latency and Scalability
SeeSaw aims to scale to larger image datasets. One challenge when scaling to larger datasets is to
keep system latency low, and system latency depends partially on the algorithms used for selecting
new results based on feedback. Table 6 shows system latencies as we increase the scale of the
datasets. Each row corresponds to a different dataset, ordered on increasing scale (number of vectors
in database). We include both the coarse and multiscale representations as different rows, as they
imply differences in number of vectors.

We highlight how SeeSaw latency remainswithin the hundreds ofmilliseconds, while a propagation-
based version of SeeSaw shows latency increasing beyond a few seconds, one motivation for our
DB alignment approximation in §4.2.

vectors CLIP ENS Rocchio SeeSaw prop.

ObjNet− 50K 0.11 0.10 0.14 0.27 0.83
BDD− 80K 0.09 0.11 0.10 0.23 0.90
COCO− 120K 0.10 0.22 0.16 0.34 1.11
BDD 1.6M 0.13 NA 0.16 0.34 2.95
COCO 1.6M 0.14 NA 0.23 0.47 2.88

Table 6. System latency per iteration (seconds) vs dataset size (# vectors). The extra − sign next to a dataset
name means coarse indexing (one vector per image), as opposed to multiscale indexing. COCO and LVIS
share the same database, so we only show one.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

260:22 Oscar Moll et al.

5.7 Hyperparameters
SeeSaw requires hyperparameters _, _𝑐 , _𝐷 . In this section we show SeeSaw handles hyperparameter
values varying an order of magnitude while still improving results vs. zero shot CLIP. Table 7 shows
values for each dataset, highlighting the maximum achieved. The enclosed row highlights the
values we used for the evaluation benchmark. We note two things: the AP values are emparically
optimal or near-optimal at similar hyperparameter values, even though the datasets are different.

For a new dataset, we recommend starting with hyperparameter values in the same range.

_𝑐 _𝐷 _ BDD COCO LVIS ObjNet Avg.

3 300 100 0.78 0.96 0.76 0.68 0.80
3 1000 100 0.77 0.97 0.77 0.68 0.80
3 3000 100 0.77 0.96 0.76 0.63 0.78
10 300 100 0.78 0.96 0.75 0.69 0.80
10 1000 30 0.79 0.96 0.76 0.70 0.80
10 1000 100 0.79 0.96 0.76 0.70 0.80
10 1000 300 0.79 0.96 0.76 0.70 0.80
10 3000 100 0.79 0.97 0.77 0.69 0.80
30 300 100 0.77 0.96 0.73 0.68 0.79
30 1000 100 0.77 0.96 0.74 0.69 0.79
30 3000 100 0.77 0.96 0.74 0.69 0.79
Table 7. SeeSaw AP for different hyperparameter settings

6 RELATEDWORK
SeeSaw relates to work in the following areas:
Relevance feedback [41] with explicit region annotation feedback, a common interface for

images[53]. SeeSaw’s novelty lies in the specific algorithms it uses, which make it work better than
existing approaches on CLIP embeddings. Rocchio’s algorithm[40] is one of the baselines we used
in this paper.
Systems for image search, such as [47], PicHunter [10], MindReader [21] and Falcon [48].

Much of this work aims to help users query by example. CLIP enables us to start the query by using
text, and we find it is important to use the CLIP query vector as a regularizer term in 4.1. Some
existing work, such as the baseline approach in [18], use the query as a positive example. Unlike
Falcon, and other work such as [39] which aim to navigate non-convex results. However, because
CLIP embeddings seem to well clustered SeeSaw can focus on this specific case.
Text-image retrieval aims to search images with text. Recent work includes Drilldown [45].

The goal is this work is to provide a richer interface with text-based refinement, though we are
able to assume some amount of labeling on the user’s data. SeeSaw aims to help the tail of queries
on a user’s database where CLIP does not work well by leveraging user input, without requiring
user labels.

Active learning [42] also studies human-in-the-loop labeling but does not directly address the
search problem of relevance feedback. Active search [17] is a subset of active learning techniques
for searching datasets more directly related to SeeSaw. ENS is a state of the art of active search
approach we compared SeeSaw to in our evaluation. Active learning can often be expensive at
runtime on large datasets due to linear or super-linear scaling. Recent work such as [9] points
out this scaling problem and instead aims to scale these approaches by restricting active learning
algorithms only to the neighborhood of search queries and leveraging vector stores to explore that

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

SeeSaw: Interactive Ad-hoc Search Over Image Databases 260:23

neighborhood. SeeSaw’s approach to database alignment§4.2 shows there can be some value to
considering the global database structure in addition to the immediate neighborhood of the query.

Semi-supervised learning [55] proposes approaches for leveraging both labeled and unlabeled
data. §4.2 in particular, can be seen as semi-supervised learning, or domain adaptation. Label
propagation [54] is a semi-supervised learning technique and has been used together with active
learning for search in [56]. Label propagation can be expensive to scale. Manifold regularization
[4], another topic in semi-supervised learning, is closely related to both label propagation and to
the regularization term we use in §4.2. Manifold regularization by itself is expensive, just like label
propagation, but collapsing the term into a small quadratic term as done in §4.2 makes it possible.
High-recall or total-recall retrieval [18],[1],[52], aims to find all relevant results within a

database. This is an important task in legal contexts for example, where legal discovery needs
to find examples and also provide some assurance that a substantial part of the results was not
missed. Some of the approaches proposed in the area are similar to the few-shot CLIP approach.
Total-recall retrieval is a harder problem than finding some positive results within the database, and
may require a large amount of exploration of likely irrelevant results to provide some assurance
about all regions of the database.

Multiscale representations The usefulness of multiscale representations of images of one form
or another has been recognized for a long time [2, 6, 44], and internal representations used by
CNN-based object detectors [11, 29] incorporate it in different ways. In this work, this general idea
is used to overcome some of CLIPs limitations, allowing us to handle more complex images with
relevant object in small portions of images.

Query relaxation techniques[13] rewrite or modify user queries by removing tokens or con-
straints from the query. These techniques help increase recall when initial queries are unnecessarily
restrictive. In SeeSaw, the text regularization term is important to improve results compared to
using only image examples, which could be interpreted as a type of query relaxation. On the other
hand, typical query relaxation techniques will textually drop modifers.
Active learning for data cleaning [27], aims to help users build better models by reducing

the amount of data that must be cleaned. Additionally active learning has been applied to other
database problems like entity resolution [25] and schema matching [49]. Here we also employ
active learning, focusing on the problem of dataset labeling.
Finally, Why and Why-Not provenance techniques help users understand how their data

relates to their query results and, conversely, why some of their data was excluded from the results
(see [8] for a general survey of many papers). Systems like SeeSaw that evolve their result set of
over time using models are generally related, although the specifics of our techniques differ as we
focus on CLIP query vector refinement rather than a more relational setting.

7 CONCLUSION
We presented SeeSaw, a system to help users find objects in their image datasets that incorporates
their feedback in the form of region-based annotations in order to improve their results. SeeSaw
helps users leverage pretrained embeddings which have not been fine-tuned for their specific
datasets due to a lack of captioned data. SeeSaw’s approach consists of framing this problem
as a semi-supervised learning problem, combining two kinds of regularization objectives into a
loss function, in order to handle the lack of labeled data. At the same time SeeSaw leverages a
multi-scale multi-vector representation of images in order to handle embedding model limitations,
and integrates it with the relevance feedback mechanisms. In order for this integration to be
successful, SeeSaw focuses on keeping latency low despite the larger dataset sizes implied by this
representation. We benchmark SeeSaw extensively on thousands of queries, showing consistent

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

260:24 Oscar Moll et al.

empirical advantages over an active learning baseline, a relevance feedback baseline from the
information retrieval community, and practical baselines such as few-shot learning.
Interesting directions for future work include reducing or removing explicit user feedback, for

example by leveraging newer generations of models such as GPT-4, as well as further taking
advantage of the abilities of vision-language models such as CLIP to provide textual feedback.

ACKNOWLEDGMENTS
Research was sponsored by the United States Air Force Research Laboratory and the Department
of the Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative Agree-
ment Number FA8750-19-2-1000. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official policies, either expressed
or implied, of the Department of the Air Force or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation herein.

REFERENCES
[1] Mustafa Abualsaud, Nimesh Ghelani, Haotian Zhang, Mark D Smucker, Gordon V Cormack, and Maura R Grossman.

2018. A System for Efficient High-Recall Retrieval. In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval (Ann Arbor, MI, USA) (SIGIR ’18). Association for Computing Machinery, New
York, NY, USA, 1317–1320.

[2] E Adelson, P Burt, C Anderson, J M Ogden, and J Bergen. 1984. PYRAMID METHODS IN IMAGE PROCESSING.
undefined (1984). https://www.semanticscholar.org/paper/e49793511ba203e26b99e7e81fd15a7d505b5cea

[3] Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh Tenenbaum, and
Boris Katz. 2019. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition mod-
els. In Advances in Neural Information Processing Systems, H Wallach, H Larochelle, A Beygelzimer, F d\'Alché-
Buc, E Fox, and R Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
97af07a14cacba681feacf3012730892-Paper.pdf

[4] Mikhail Belkin and Partha Niyogi. 2006. Manifold regularization: A geometric framework for learning from labeled and
unlabeled examples. https://www.jmlr.org/papers/volume7/belkin06a/belkin06a.pdf. https://www.jmlr.org/papers/
volume7/belkin06a/belkin06a.pdf Accessed: 2023-3-7.

[5] E. Bernhardsson. [n.d.]. ANNOY: Approximate Nearest Neighbors Oh Yeah. https://github.com/spotify/annoy.
Accessed: 2021-05-20.

[6] P Burt and E Adelson. 1983. The Laplacian Pyramid as a Compact Image Code. IEEE Trans. Commun. 31, 4 (April 1983),
532–540. https://doi.org/10.1109/TCOM.1983.1095851

[7] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. 2019.
UNITER: UNiversal Image-TExt Representation Learning. (Sept. 2019). arXiv:1909.11740 [cs.CV] http://arxiv.org/abs/
1909.11740

[8] James Cheney, Laura Chiticariu, and Wang Chiew Tan. 2009. Provenance in Databases: Why, How, and Where. Found.
Trends Databases 1, 4 (2009), 379–474. https://doi.org/10.1561/1900000006

[9] C Coleman, E Chou, J Katz-Samuels, and others. 2022. Similarity search for efficient active learning and search of rare
concepts. Proceedings of the (2022). https://ojs.aaai.org/index.php/AAAI/article/view/20591

[10] I J Cox, M L Miller, T P Minka, T V Papathomas, and P N Yianilos. 2000. The Bayesian image retrieval system,
PicHunter: theory, implementation, and psychophysical experiments. IEEE Trans. Image Process. 9, 1 (Jan. 2000), 20–37.
https://doi.org/10.1109/83.817596

[11] Piotr Dollár, Ron Appel, Serge Belongie, and Pietro Perona. 2014. Fast feature pyramids for object detection. IEEE
Trans. Pattern Anal. Mach. Intell. 36, 8 (Aug. 2014), 1532–1545. https://doi.org/10.1109/TPAMI.2014.2300479

[12] Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest neighbor graph construction for generic similarity
measures. In Proceedings of the 20th international conference on World wide web - WWW ’11 (Hyderabad, India). ACM
Press, New York, New York, USA. https://doi.org/10.1145/1963405.1963487

[13] Shady Elbassuoni, Maya Ramanath, and Gerhard Weikum. 2011. Query relaxation for entity-relationship search. In
The Semanic Web: Research and Applications. Springer Berlin Heidelberg, Berlin, Heidelberg, 62–76. https://doi.org/10.
1007/978-3-642-21064-8_5

[14] Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja Fidler. 2017. VSE++: Improving Visual-Semantic Embeddings
with Hard Negatives. (July 2017). arXiv:1707.05612 [cs.LG] http://arxiv.org/abs/1707.05612

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

https://www.semanticscholar.org/paper/e49793511ba203e26b99e7e81fd15a7d505b5cea
https://proceedings.neurips.cc/paper/2019/file/97af07a14cacba681feacf3012730892-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/97af07a14cacba681feacf3012730892-Paper.pdf
https://www.jmlr.org/papers/volume7/belkin06a/belkin06a.pdf
https://www.jmlr.org/papers/volume7/belkin06a/belkin06a.pdf
https://www.jmlr.org/papers/volume7/belkin06a/belkin06a.pdf
https://github.com/spotify/annoy
https://doi.org/10.1109/TCOM.1983.1095851
https://arxiv.org/abs/1909.11740
http://arxiv.org/abs/1909.11740
http://arxiv.org/abs/1909.11740
https://doi.org/10.1561/1900000006
https://ojs.aaai.org/index.php/AAAI/article/view/20591
https://doi.org/10.1109/83.817596
https://doi.org/10.1109/TPAMI.2014.2300479
https://doi.org/10.1145/1963405.1963487
https://doi.org/10.1007/978-3-642-21064-8_5
https://doi.org/10.1007/978-3-642-21064-8_5
https://arxiv.org/abs/1707.05612
http://arxiv.org/abs/1707.05612

SeeSaw: Interactive Ad-hoc Search Over Image Databases 260:25

[15] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc Aurelio Ranzato, and Tomas Mikolov.
2013. DeViSE: A Deep Visual-Semantic Embedding Model. In Advances in Neural Information Processing Systems,
C J Burges, L Bottou, M Welling, Z Ghahramani, and K Q Weinberger (Eds.), Vol. 26. Curran Associates, Inc. https:
//proceedings.neurips.cc/paper/2013/file/7cce53cf90577442771720a370c3c723-Paper.pdf

[16] Roman Garnett, Yamuna Krishnamurthy, Xuehan Xiong, Jeff Schneider, and Richard Mann. 2012. Bayesian Optimal
Active Search and Surveying. (June 2012). arXiv:1206.6406 [cs.LG] http://arxiv.org/abs/1206.6406

[17] Roman Garnett, Yamuna Krishnamurthy, Xuehan Xiong, Jeff Schneider, and Richard Mann. 2012. Bayesian Optimal
Active Search and Surveying. (June 2012). arXiv:1206.6406 [cs.LG]

[18] Maura R Grossman, G Cormack, and Adam Roegiest. 2016. TREC 2016 Total Recall Track Overview. TREC (2016).
[19] Agrim Gupta, Piotr Dollár, and Ross Girshick. 2019. LVIS: A Dataset for Large Vocabulary Instance Segmentation.

arXiv [cs.CV] (Aug 2019). https://arxiv.org/abs/1908.03195
[20] Wildlife Insights. [n.d.]. Wildlife Insights. https://www.wildlifeinsights.org/ Accessed on Mar 26, 2023.
[21] Y Ishikawa, R Subramanya, and C Faloutsos. 1998. MindReader: Querying Databases Through Multiple Examples.

VLDB J. (1998). https://www.semanticscholar.org/paper/04938be9fd727ea6363cc950efd263ff82d02b77
[22] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V Le, Yunhsuan Sung, Zhen Li, and Tom

Duerig. 2021. Scaling up visual and vision-language representation learning with noisy text supervision. (Feb. 2021).
arXiv:2102.05918 [cs.CV] http://proceedings.mlr.press/v139/jia21b/jia21b.pdf

[23] Shali Jiang, Gustavo Malkomes, Geoff Converse, Alyssa Shofner, Benjamin Moseley, and Roman Garnett. 2017. Efficient
Nonmyopic Active Search. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of
Machine Learning Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR, 1714–1723. https://proceedings.
mlr.press/v70/jiang17d.html

[24] F Jing, M Li, H-J Zhang, and B Zhang. 2004. Relevance feedback in region-based image retrieval. IEEE Trans. Circuits
Syst. Video Technol. 14, 5 (May 2004), 672–681. https://doi.org/10.1109/tcsvt.2004.826775

[25] Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa. 2019. Low-resource deep entity resolution with
transfer and active learning. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
(Florence, Italy). Association for Computational Linguistics, Stroudsburg, PA, USA. https://doi.org/10.18653/v1/p19-
1586

[26] Wouter M Kouw and Marco Loog. 2021. A review of domain adaptation without target labels. IEEE Trans. Pattern Anal.
Mach. Intell. 43, 3 (March 2021), 766–785. https://doi.org/10.1109/TPAMI.2019.2945942

[27] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J Franklin, and Ken Goldberg. 2016. ActiveClean. Proceedings
VLDB Endowment 9, 12 (Aug. 2016), 948–959. https://doi.org/10.14778/2994509.2994514

[28] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common Objects in Context. CoRR
abs/1405.0312 (2014). arXiv:1405.0312 http://arxiv.org/abs/1405.0312

[29] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. 2016. Feature Pyramid
Networks for Object Detection. (Dec. 2016). arXiv:1612.03144 [cs.CV] http://arxiv.org/abs/1612.03144

[30] Dong C Liu and Jorge Nocedal. 1989. On the limited memory BFGS method for large scale optimization. Math. Program.
45, 1 (Aug. 1989), 503–528. https://doi.org/10.1007/BF01589116

[31] C.D. Manning, P. Raghavan, and H. Schütze. 2008. Introduction to Information Retrieval. Cambridge University Press.
https://books.google.com/books?id=t1PoSh4uwVcC

[32] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information Retrieval.
Cambridge University Press. https://doi.org/10.1017/CBO9780511809071

[33] Kevin P Murphy. 2022. Probabilistic Machine Learning: An Introduction. MIT Press. https://play.google.com/store/
books/details?id=wrZNEAAAQBAJ

[34] Alexandru Niculescu-Mizil and Rich Caruana. 2005. Predicting good probabilities with supervised learning. In
Proceedings of the 22nd international conference on Machine learning - ICML ’05 (Bonn, Germany). ACM Press, New
York, New York, USA. https://doi.org/10.1145/1102351.1102430

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. (Dec. 2019). arXiv:1912.01703 [cs.LG] http://arxiv.org/abs/1912.01703

[36] John C Platt. 2000. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood
Methods. 10, 3 (June 2000). http://dx.doi.org/

[37] Alec Radford, 1. Jong Wook Kim, 1. Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, and et al. [n.d.]. Learning transferable visual models from natural lan-
guage supervision. https://cdn.openai.com/papers/Learning_Transferable_Visual_Models_From_Natural_Language_
Supervision.pdf

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

https://proceedings.neurips.cc/paper/2013/file/7cce53cf90577442771720a370c3c723-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/7cce53cf90577442771720a370c3c723-Paper.pdf
https://arxiv.org/abs/1206.6406
http://arxiv.org/abs/1206.6406
https://arxiv.org/abs/1206.6406
https://arxiv.org/abs/1908.03195
https://www.wildlifeinsights.org/
https://www.semanticscholar.org/paper/04938be9fd727ea6363cc950efd263ff82d02b77
https://arxiv.org/abs/2102.05918
http://proceedings.mlr.press/v139/jia21b/jia21b.pdf
https://proceedings.mlr.press/v70/jiang17d.html
https://proceedings.mlr.press/v70/jiang17d.html
https://doi.org/10.1109/tcsvt.2004.826775
https://doi.org/10.18653/v1/p19-1586
https://doi.org/10.18653/v1/p19-1586
https://doi.org/10.1109/TPAMI.2019.2945942
https://doi.org/10.14778/2994509.2994514
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1612.03144
https://doi.org/10.1007/BF01589116
https://books.google.com/books?id=t1PoSh4uwVcC
https://doi.org/10.1017/CBO9780511809071
https://play.google.com/store/books/details?id=wrZNEAAAQBAJ
https://play.google.com/store/books/details?id=wrZNEAAAQBAJ
https://doi.org/10.1145/1102351.1102430
https://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://dx.doi.org/
https://cdn.openai.com/papers/Learning_Transferable_Visual_Models_From_Natural_Language_Supervision.pdf
https://cdn.openai.com/papers/Learning_Transferable_Visual_Models_From_Natural_Language_Supervision.pdf

260:26 Oscar Moll et al.

[38] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda
Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models
From Natural Language Supervision. (Feb. 2021). arXiv:2103.00020 [cs.CV] http://arxiv.org/abs/2103.00020

[39] Jean-Michel Renders. 2018. Active search for high recall: A non-stationary extension of Thompson sampling. In
Lecture Notes in Computer Science. Springer International Publishing, Cham, 722–728.

[40] J. J. Rocchio. 1971. Relevance feedback in information retrieval. In The SMART Retrieval System – Experiments in
Automatic Document Processing, Gerard Salton (Ed.). Prentice Hall, Englewood Cliffs, NJ, 313–323.

[41] Gerard Salton and Chris Buckley. 1990. Improving retrieval performance by relevance feedback. J. Am. Soc. Inf. Sci. 41,
4 (June 1990), 288–297. https://doi.org/10.1002/(sici)1097-4571(199006)41:4<288::aid-asi8>3.0.co;2-h

[42] Burr Settles. [n.d.]. Active Learning. Morgan Claypool.
[43] Shai Shalev-Shwartz and Shai Ben-David. 2014. UnderstandingMachine Learning: From Theory to Algorithms. Cambridge

University Press. https://doi.org/10.1017/CBO9781107298019
[44] E P Simoncelli and W T Freeman. 1995. The steerable pyramid: a flexible architecture for multi-scale derivative

computation. In Proceedings., International Conference on Image Processing, Vol. 3. 444–447 vol.3. https://doi.org/10.
1109/ICIP.1995.537667

[45] Fuwen Tan, Paola Cascante-Bonilla, Xiaoxiao Guo, Hui Wu, Song Feng, and Vicente Ordonez. 2019. Drill-down:
Interactive Retrieval of Complex Scenes using Natural Language Queries. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett (Eds.). 2647–2657.

[46] Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro Perona, and Serge
Belongie. 2015. Building a bird recognition app and large scale dataset with citizen scientists: The fine print in
fine-grained dataset collection. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Boston,
MA, USA). IEEE. https://doi.org/10.1109/cvpr.2015.7298658

[47] Nuno Vasconcelos and Andrew Lippman. [n.d.]. Learning from user feedback in image retrieval systems. https:
//papers.nips.cc/paper/1999/file/7283518d47a05a09d33779a17adf1707-Paper.pdf. https://papers.nips.cc/paper/1999/
file/7283518d47a05a09d33779a17adf1707-Paper.pdf Accessed: 2021-8-12.

[48] Leejay Wu, Christos Faloutsos, Katia Sycara, and Terry R Payne. [n.d.]. FALCON: Feedback adaptive loop for
content-based retrieval. http://www.cs.cmu.edu/~christos/PUBLICATIONS/vldb2k-falcon.pdf. http://www.cs.cmu.
edu/~christos/PUBLICATIONS/vldb2k-falcon.pdf Accessed: 2022-5-30.

[49] Zhepeng Yan, Nan Zheng, Zachary G Ives, Partha Pratim Talukdar, and Cong Yu. 2013. Actively soliciting feedback
for query answers in keyword search-based data integration. Proceedings VLDB Endowment 6, 3 (Jan. 2013), 205–216.
https://doi.org/10.14778/2535569.2448954

[50] Stuart Young, Johanna Rode-Margono, and Rajan Amin. 2018. Software to facilitate and streamline camera trap data
management: A review. Ecol. Evol. 8, 19 (Oct. 2018), 9947–9957. https://doi.org/10.1002/ece3.4464

[51] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and Trevor Darrell. 2018.
BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. CoRR abs/1805.04687 (2018).
arXiv:1805.04687 http://arxiv.org/abs/1805.04687

[52] Zhe Yu and Tim Menzies. 2018. Total Recall, Language Processing, and Software Engineering. (Aug. 2018).
arXiv:1809.00039 [cs.SE]

[53] Xiang Sean Zhou and Thomas S Huang. 2003. Relevance feedback in image retrieval: A comprehensive review.
Multimed. Syst. 8, 6 (April 2003), 536–544. https://doi.org/10.1007/s00530-002-0070-3

[54] Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning from labeled and unlabeled data with label propagation. (2002).
https://www.semanticscholar.org/paper/2a4ca461fa847e8433bab67e7bfe4620371c1f77

[55] Xiaojin Zhu and Andrew B Goldberg. 2009. Introduction to Semi-supervised Learning. Morgan & Claypool Publishers.
https://doi.org/10.2200/S00196ED1V01Y200906AIM006

[56] Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. 2003. Combining active learning and semi-supervised learning
using gaussian fields and harmonic functions. In ICML 2003 workshop on the continuum from labeled to unlabeled data
in machine learning and data mining, Vol. 3. http://mlg.eng.cam.ac.uk/zoubin/papers/zglactive.pdf

Received April 2023; revised July 2023; accepted August 2023

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 260. Publication date: December 2023.

https://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
https://doi.org/10.1002/(sici)1097-4571(199006)41:4<288::aid-asi8>3.0.co;2-h
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1109/ICIP.1995.537667
https://doi.org/10.1109/ICIP.1995.537667
https://doi.org/10.1109/cvpr.2015.7298658
https://papers.nips.cc/paper/1999/file/7283518d47a05a09d33779a17adf1707-Paper.pdf
https://papers.nips.cc/paper/1999/file/7283518d47a05a09d33779a17adf1707-Paper.pdf
https://papers.nips.cc/paper/1999/file/7283518d47a05a09d33779a17adf1707-Paper.pdf
https://papers.nips.cc/paper/1999/file/7283518d47a05a09d33779a17adf1707-Paper.pdf
http://www.cs.cmu.edu/~christos/PUBLICATIONS/vldb2k-falcon.pdf
http://www.cs.cmu.edu/~christos/PUBLICATIONS/vldb2k-falcon.pdf
http://www.cs.cmu.edu/~christos/PUBLICATIONS/vldb2k-falcon.pdf
https://doi.org/10.14778/2535569.2448954
https://doi.org/10.1002/ece3.4464
https://arxiv.org/abs/1805.04687
http://arxiv.org/abs/1805.04687
https://arxiv.org/abs/1809.00039
https://doi.org/10.1007/s00530-002-0070-3
https://www.semanticscholar.org/paper/2a4ca461fa847e8433bab67e7bfe4620371c1f77
https://doi.org/10.2200/S00196ED1V01Y200906AIM006
http://mlg.eng.cam.ac.uk/zoubin/papers/zglactive.pdf

	Abstract
	1 Introduction
	2 System
	2.1 CLIP
	2.2 Vector Store
	2.3 User Interface (UI) and Querying
	2.4 Preprocessing

	3 Approach
	3.1 Motivation for Query Alignment
	3.2 Motivation for CLIP Alignment Approach

	4 Detailed Approach
	4.1 CLIP Alignment
	4.2 Database (DB) Alignment
	4.3 Multiscale Representation
	4.4 Solving for w

	5 Evaluation
	5.1 Accuracy Benchmark
	5.2 SeeSaw Benefits
	5.3 SeeSaw Breakdown
	5.4 Comparison with Baselines
	5.5 End-to-End Tests
	5.6 System Latency and Scalability
	5.7 Hyperparameters

	6 Related work
	7 Conclusion
	Acknowledgments
	References

